ON CONGRUENCES BETWEEN THE COEFFICIENTS OF TWO L-SERIES WHICH ARE RELATED TO A HYPERELLIPTIC CURVE OVER Q

Fumio SAIRAIJI

(Received February 1, 1999)

1. Introduction

Let $f(x)$ be a monic irreducible polynomial with rational integer coefficients and let p be a prime integer. Reducing the coefficients of $f(x)$ modulo p, we obtain the polynomial $f_{p}(x)$ with coefficients in $\mathbf{Z} / p \mathbf{Z}$. A rule of the factorization of $f_{p}(x)$ over $\mathbf{Z} / p \mathbf{Z}$ is called a reciprocity law for $f(x)$ (cf. Wyman [11]). For example, when $f(x)$ is of degree 2 , a reciprocity law for $f(x)$ is given by the Legendre symbol $\left(D_{f} / p\right)$ for the discriminant D_{f} of $f(x)$.

In the case that $f(x)$ is of degree 3 , the minimal splitting field K of $f(x)$ over \mathbf{Q} is the Galois extension generated by the coordinates of the two-division points of the elliptic curve $E: y^{2}=f(x)$. A reciprocity law for $f(x)$ is given by the Legendre symbol (D_{f} / p) and the coefficients of the L-series of E over \mathbf{Q}, which is the Mellin transform of a modular form of weight two under the Taniyama-Shimura conjecture (the Wiles theorem). Furthermore, in the case that $f(x)$ is of degree 3 and $D_{f}<0$, the inverse Mellin transform of the Artin L-function $L(\pi, K / \mathbf{Q}, s)$ attached to the twodimensional irreducible representation π for the Galois group of K over \mathbf{Q}, is a modular form of weight one, by the Weil-Langlands theorem. Thus the Fourier coefficients of the modular form of weight one also gives a reciprocity law for $f(x)$.

In the latter case, we can associate two modular forms with E and the Galois extension generated by the coordinates of its two-division points. Koike [3] obtained congruences between the Fourier coefficients of two modular forms. His congruences describe the relation of the above two reciprocity laws. Naito [6] gave congruences between the coefficients of the L-series of E and those of an Artin L-series attached to the Galois extension generated by the coordinates of the three-division points of E.

In this paper we consider congruences modulo 2 between the coefficients of the L series of the Jacobian variety of a hyperelliptic curve $y^{2}=f(x)$ and those of an Artin L -series which is related to the Galois extension over \mathbf{Q}, generated by the coordinates of the two-division points of the same Jacobian variety.

Let $f(x)$ be a polynomial of degree n over \mathbf{Q} with no multiple roots. Let C be a hyperelliptic curve defined by $y^{2}=f(x)$. We denote by g the genus of C. We see that

