INDUCING CHARACTERS OF PRIME POWER DEGREE

MARK L. LEWIS

(Received October 27, 1998)

1. Introduction

Let G be a (finite) group and χ be an irreducible character for G. We consider the set of primitive characters that induce χ . In general, there is very little that can be said about this set other than the degrees of these characters must divide $\chi(1)$. When $\chi(1)$ is a power of some prime, this set often has more structure. For example, if p is an odd prime, G is p-solvable, and χ is monomial with $\chi(1)$ a power of p, then every primitive character inducing χ must be linear (Theorem 10.1 of [7]). Given any prime p, a p-solvable group G of p-length 1, and a character $\chi \in Irr(G)$ where $\chi(1)$ is a power of p, it has been shown that every primitive character inducing χ has the same degree (Theorem A of [8]). It is easy to find examples of p-solvable groups that do not have p-length 1, but do have characters of prime power degree that are induced by primitive characters of different degrees. For example, GL₂(3) has a character of degree 4 that is induced by a linear character and a primitive character of degree 2. In [8], we construct an example where p is odd. The purpose of this note is to prove that such examples cannot occur for characters of p-power degree where this degree is "small." With this in mind, we have the following theorem.

Theorem A. Let p be an odd prime, and let G be a p-solvable group. Let $\chi \in Irr(G)$ be a character of p-power degree less than or equal to p^p . Then every primitive character inducing χ has the same degree.

Note that the monomial character of degree 4 in $GL_2(3)$ that is also induced by a primitive character of degree 2 shows that Theorem A is not necessarily true when we do not assume that p is odd. In [8], we find a p-solvable group that has character of degree p^{p+1} that is induced by primitive characters of different degrees where p is an odd prime. (The example in [8] has p = 3, but it is not difficult to find similar examples for many other primes.)

Using our methods, we also obtain an analogue to a result of Dade. The main theorem of [1] considers the following situation: G is a p-solvable group for some odd prime p, the character $\chi \in Irr(G)$ is monomial and has p-power degree, and N is a subnormal subgroup. In this situation, he proved that if θ is an irreducible constituent of χ_N , then θ is monomial. In other words, he proved that θ and χ are induced by