SPECTRAL ANALYSIS OF AN ISOTROPIC STRATIFIED ELASTIC STRIP AND APPLICATIONS

Tark BOUHENNACHE

(Received September 21, 1998)

1. Introduction

The characteristics of an elastic isotropic stratified strip $\Omega=\left\{\mathbf{x}=\left(x_{1}, x_{2}\right) ; x_{2} \in\right.$ $(0, L)\} \subset \mathbb{R}^{2}$ are the density ρ and Lamé coefficients λ and $\boldsymbol{\mu}$ that we assume to be measurable functions, depending on x_{2} only, and bounded from below and above by two positive constants. We shall derive a limiting absorption principle (LAP) and a division theorem for the selfadjoint operator $(\mathcal{D}(A), A)$ (see (2)) associated with Ω with Dirichlet and free surface conditions on $\left\{x_{2}=L\right\}$ and $\left\{x_{2}=0\right\}$, respectively. These boundary conditions come from a model of a seismic problem. For other studies dealing with elasticity in different situations see for instance [7] and [12].

Roughly speaking, a LAP means that the resolvent operator $z \longrightarrow R_{A}(z):=(A-$ $\left.z I_{d}\right)^{-1}$ can be extended continuously to the essential spectrum (a part of the real axis) in suitable topologies. It is an important stage in scattering theory (cf. [1]). A division theorem enables to deal with a perturbed or a multistratified strip (cf. [3]).

A multiplication operator in $\oplus^{\infty} Ł^{2}(\mathbb{R}):=\left\{\left(f^{n}\right)_{n \geq 1} ; \sum^{\infty}\left\|f^{n}\right\|_{L^{2}(\mathbb{R})}^{2}<\infty\right\}$ by a family of functions $\mu_{n}, n \geq 1$, is defined by

$$
\left\{\begin{array}{l}
\mathcal{D}(M)=\left\{\left(f^{n}\right)_{n \geq 1} \in \oplus^{\infty} L^{2}(\mathbb{R}) ;\left(\mu_{n} f^{n}\right)_{n \geq 1} \in \oplus^{\infty} L^{2}(\mathbb{R})\right\} \tag{1}\\
M\left(f^{n}\right)_{n \geq 1}=\left(\mu_{n} f^{n}\right)_{n \geq 1} .
\end{array}\right.
$$

As we will see A is unitarily equivalent to M with μ_{n} being the dispersion curves λ_{n} of A. Such a result holds for other differential operators, in particular for the acoustic operator B (cf. (9)) studied in [4] and [5]. But it is the first time that the following original phenomena are proved (cf. [3], ch. 5 and ch.7). They do not take place in the acoustic case.
$\left\{\begin{array}{l}\text { - The functions } \lambda_{n} \text { are not necessarily monotonic on } \mathbb{R}_{+} . \\ \text {- One can have } \lambda_{n}^{\prime \prime}(0)=\lambda_{n}^{\prime \prime \prime}(0)=0 \text { in addition to } \lambda_{n}^{\prime}(0)=0 .\end{array}\right.$

One of our objectives is to show the spectral consequences of these phenomena and illustrate the fundamental difference between the elastic and the acoustic cases.

