GEOMETRY ASSOCIATED WITH NORMAL DISTRIBUTIONS

HIROHIKO SHIMA and JIAN HUA HAO

(Received June 26, 1998)

1. Introduction

It is known that manifolds of smooth families of probability distributions admit *dualistic structures*. S. Amari proposed *Information Geometry*, whose keywords are *dualistic connections* [1]. Among them the case of dual connections being flat is interesting. Many important families of probability distributions, e.g. exponential families admit *flat* dual connections.

The notion of flat dual connections is the same with *Hessian structures* which have being developed from a different view point [9]-[12].

In this paper, for a linear mapping ρ of a domain Ω into the space of positive definite symmetric matrices we construct an exponential family of probability distributions $\{p(x; \theta, \omega)\}$ on \mathbb{R}^n parametrized by $\theta \in \mathbb{R}^n$, $\omega \in \Omega$, and study a Hessian structure on $\mathbb{R}^n \times \Omega$ given by the exponential family. Such families contain *n*-dimensional normal distributions (Example 1) and a family of constant negative curvature (Example 2).

In case of a Lie group acting on Ω , ρ is assumed to be equivariant. O.S. Rothaus and I. Satake studied such a linear mapping ρ for homogeneous convex cones [7][8]. Using ρ we introduce a Hessian structure on a vector bundle over a compact hyperbolic affine manifold and prove a certain vanishing theorem (Theorem 2).

2. Hessian structures

We first review some fundamental facts on Hessian structures needed in this paper [1][11].

Let U be an *n*-dimensional real vector space with canonical flat connection D. Let Ω be a domain in U with a convex function ψ , i.e. the Hessian $Dd\psi$ is positive defined on Ω . Then the metric $g = Dd\psi$ is called a *Hessian metric* and the pair (D, g) a *Hessian structure* on Ω . Let $\{\mathbf{u}_1, \dots, \mathbf{u}_n\}$ and $\{\mathbf{u}^{*1}, \dots, \mathbf{u}^{*n}\}$ be dual basis of U and U^* (the dual vector space of U) respectively. We denote by $\{x^1, \dots, x^n\}$ (resp. $\{x_1^*, \dots, x_n^*\}$) the linear coordinate system with respect to $\{\mathbf{u}_1, \dots, \mathbf{u}_n\}$ (resp. $\{\mathbf{u}^{*1}, \dots, \mathbf{u}^n\}$). Let $\iota : \Omega \longrightarrow U^*$ be a mapping given by

$$x_i^* \circ \iota = -\frac{\partial \psi}{\partial x^i},$$