ON RATIONALITY OF LOGARITHMIC \mathbb{Q}-HOMOLOGY PLANES-I

C. R. PRADEEP* and Anant R. SHASTRI ${ }^{\dagger}$

(Recieved November 22, 1995)

1. Introduction

Let V be a normal surface defined over \mathbb{C}. Following [3], we say V is logarithmic if all its singularities are of quotient type. It is called a \mathbb{Q}-homology plane if its reduced homology groups with rational coefficients all vanish. Let $\sum=\left\{p_{1}, \ldots, p_{r}\right\}$ denote the set of singularities of V. Then recall that the logarithmic Kodaira dimension of V is defined to be the logarithmic Kodaira dimension of $V \backslash \sum$. In a sequence of three articles beginning with this, we propose to probe the following questions:

Question A: Are all logarithmic \mathbb{Q}-homology planes rational?
All logarithmic \mathbb{Q}-homology planes with logarithmic Kodaira dimension ≤ 1 are known the be rational (see [3], [2], [7]). Therefore Question A immediately reduces to:

Question B: Are all logarithmic \mathbb{Q}-homology planes of logarithmic Kodaira dimension 2 rational?

It may be recalled that in [4], it is proved that all smooth Z-homology planes are rational. Adopting the style therein, we can pose the following:

Question C: Let X be a smooth projective surface defined over \mathbb{C}. Suppose there is a reduced effective divisor Δ on X such that
i) the irreducible components of Δ generate the $\operatorname{Pic}(X) \otimes \mathbb{Q}$;
ii) each connected component of Δ is simply connected;
iii) $\kappa(X, K+\Delta)=2$.

Then is X a rational surface?

Observe that by blowing up points inside Δ, if necessary, we can assume that Δ is a normal crossing curve. By blowing down, if necessary, we can assume that

[^0]
[^0]: *Supported by National Board for Higher Mathematics, D.A.E., Govt. of India.
 ${ }^{\dagger}$ Hospitality at International Centre for Theoretical Physics, Trieste during the preparation of this manuscript is duly acknowledged.

