Hanaki, A. Osaka J. Math. 34 (1997), 357-361

SELF DUAL GROUPS OF ORDER p^5 (p AN ODD PRIME)

Akihide HANAKI

(Received December 14, 1995)

1. Introduction

Let G be a finite group, $Irr(G) = \{\chi_1, \dots, \chi_k\}$ be the set of all irreducible characters, $Cl(G) = \{C_1, \dots, C_k\}$ be the conjugacy classes of G, and x_i be a representative of C_i . We call G self dual if (by renumbering indices)

(*) $|C_j|\chi_i(x_j)/\chi_i(1) = \chi_j(1)\chi_j(x_i)$, for all *i*, *j*.

This condition is found in E. Bannai [1]. T. Okuyama [4] proved that self dual groups are nilpotent, and that a nilpotent group is self dual if and only if its all Sylow subgroups are self dual. So if we consider self dual groups we may deal with only p-groups. Obviously abelian groups are self dual. Some examples of self dual groups are discussed in [2].

If G is self dual it is easy to check that $|C_i| = \chi_i(1)^2$ for all *i*. It is easy to see that non abelian *p*-groups of order at most p^4 cannot satisfy this condition, and so they are not self dual. By the classification of groups of order 2^5 , there is no group of order 2^5 satisfying this condition. For odd *p*, in classification table of groups of order p^5 [3], we can see that one isoclinism family Φ_6 satisfies this condition. We will show that all of groups in Φ_6 are self dual.

2. Definition of groups

We fix an odd prime p. Let G be a p-group of order p^5 which belongs to Φ_6 defined in [3], namely

$$G = \langle a_1, \ a_2, \ b, \ c_1, \ c_2 \ \big| \ [a_1, a_2] = b, \ [a_i, b] = c_i, \ a_i^p = \zeta_i, \ b^p = c_i^p = 1 \ (i = 1, \ 2) \rangle,$$

where (ζ_1, ζ_2) is one of the followings:

(1) (c_1, c_2) ,

- (2) (c_1^k, c_2) , where $k = g^r$, $r = 1, 2, \cdots, (p-1)/2$,
- (3) $(c_2^{-r/4}, c_1^r c_2^r)$, where r = 1 or ν ,
- (4) $(c_2, c_1^{\nu}),$
- (5) (c_2^k, c_1c_2) , where $4k = g^{2r+1} 1$, $r = 1, 2, \cdots, (p-1)/2$,
- (6) $(c_1, 1), p > 3,$
- (7) $(1, c_1^r)$, where r = 1 or ν , and p > 3,
- (8) (1,1),