THE AVERAGE EDGE ORDER OF TRIANGULATIONS OF 3-MANIFOLDS

Makoto TAMURA

(Received August 16, 1995)

1. Introduction

Let K be a triangulation of compact 3-manifold M with $V(K), E(K), F(K)$ and $T(K)$ the numbers of vertices, edges, faces, and tetrahedra in K, respectively. Note that we distinguish a triangulation from a cell decomposition into a union of 3 -simplices, that is, such a cell decomposition is a triangulation when the intersection of any two simplices is actually a face of each of them. The order of an edge in K is the number of triangles incident to that edge. The average edge order of K is then $3 F(K) / E(K)$, which we will denote $\mu(K)$. Feng Luo and Richard Stong showed in [2] that for a closed 3-manifold $M, \mu(K)$ being small implies that the topology of M is fairly simple and restricts the triangulation K. This is the following theorem.

Theorem 1 [2]. Let K be any triangulation of a closed connected 3-manifold M without boundary. Then
(a) $3 \leq \mu(K)<6$, equality holds if and only if K is the triangulation of the boundary of a 4-simplex.
(b) For any $\varepsilon>0$, there are triangulations K_{1} and K_{2} of M such that $\mu\left(K_{1}\right)<4.5+\varepsilon$ and $\mu\left(K_{2}\right)>6-\varepsilon$.
(c) If $\mu(K)<4.5$, then K is a triangulation of S^{3}. There are an infinite number of distinct such triangulations, but for any constant $c<4.5$ there are only finitely many triangulations K with $\mu(K) \leq c$.
(d) If $\mu(K)=4.5$, then K is a triangulation of $S^{3}, S^{2} \times S^{1}$, or $S^{2} \tilde{\times} S^{1}$. Furthermore, in the last two cases, the triangulations can be described.

The purpose of this note is to establish similar results for compact 3-manifolds with non-empty boundary. In fact we get the following theorem.

Theorem 2. Let K be any triangulation of a compact connected 3-manifold M with non-empty boundary. Then
(a) $2 \leq \mu(K)<6$, equality holds if and only if K is the triangulation of one 3-simplex.

