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0. Introduction

In algebraic transformation groups, one of the important problems is the
following.

Linearization problem ([6]). Let G be a reductive complex algebraic group. Is
any algebraic G action on affine space Cn linearίzable, i.e. isomorphic to some G
module as G variety!

Some positive answers to this problem have been given (see [1] for a survey
article) but in 1989, G.W. Schwarz [17] constructed counterexamples for many
noncommutative groups with 0(2,C) being the most explicit case (in the case that
the acting group is commutative, any counterexample have never found, and see

[7], [9], [11], [12] for further recent results).
In this paper, we consider the analogous problem in the real algebraic category,

which was posed in [15]. Then it would be appropriate to take a compact Lie
group as acting group since there is a one-to-one correspondence between the
family of compact Lie groups and that of reductive complex algebraic groups
through the complexification (see [14] p.247).

Schwarz used the properties of complex algebraic geometry to find the
counterexamples, so it is not clear whether his argument works in the real algebraic
category because R is not algebraically closed. We use the methods of
Masuda-Petrie [11] to obtain the following result.

Theorem. There is a continuous family of algebraically inequivalent, non-
linearizable real algebraic O(2,R) actions on R4.

Let G be a compact real algebraic group and Gc be the reductive complex
algebraic group obtained from G via the complexification. Let ACT(G,R") (resp.
ACT(Gc,C

n)) be the set of equivalence classes of real algebraic G actions on R"
(resp. complex algebraic Gc actions on CM), where the equivalence relation is defined
by G variety (resp. Gc variety) isomorphism. Then there is a complexification map


