THE FUNDAMENTAL GROUP OF THE SMOOTH PART OF A LOG FANO VARIETY

D.-Q. ZHANG

(Received March 22, 1994)

Introduction

Let X be a normal projective variety over the complex number field C. We call X a Fano variety if X is Q-Gorenstein and the anti-canonical divisor $-K_X$ is ample. A Fano variety X is said to be a log Fano variety if X has only log terminal singularities (cf. [6]). A Fano variety X is called a canonical Fano variety if X has only canonical singularities (cf. [6]). The Cartier index c(X) is the smallest positive integer such that $c(X)K_X$ is a Cartier divisor. The Fano index, denoted by r(X), is the largest positive rational number such that $-K_X \sim_q r(X)H$ (Q-linear equivalence) for a Cartier divisor H.

This note consists of two sections. In 1, we shall consider canonical Fano 3-folds and prove the following:

Theorem 1. Let X be a canonical Fano 3-fold. Let $X^o := X - \text{Sing } X$ be the smooth part of X. Assume that X has only isolated singularities. Then we have :

(1) Suppose the Fano index r(X) is 1. Then $\pi_1(X^o) = \mathbf{Z}/c(X)\mathbf{Z}$ (cf. Remark 1.1 in §1).

(2) Suppose that the canonical divisor K_x is a Cartier divisor. Then X^o is simply connected.

REMARK. (1) The assumption that X has only isolated singularities is used to prove Lemma 1.3 in \$1.

(2) Using the same proof (see §1) one can show that $\pi_1(X^o) = \mathbf{Z}/c(X)\mathbf{Z}$ when X is a log Fano variety of Fano index one and with only isolated singularities because even in this case the $\mathbf{Z}/c(X)\mathbf{Z}$ -covering Y constructed in §1 has only isolated canonical singularities.

In [19], we shall give a universal bound for c(X). Under the much stronger condition that X has only terminal and cyclic quotient singularities, T. Sano