Hoshino, M. and Takashima, S. Osaka J. Math. 31 (1994), 729-746

ON LAMBEK TORSION THEORIES, II

MITSUO HOSHINO AND SHINSUKE TAKASHIMA

(Received April 6, 1993)

In this note, generalizing recent works of Masaike [15] and Hoshino [9], we will provide another approach to the theory of QF-3 rings. We will also provide an explanation to the symmetry established by Masaike [14, Theorem 2].

Recall that a ring R is called left (resp. right) QF-3 if it has a minimal faithful left (resp. right) module, i.e., a faithful left (resp. right) module which appears as a direct summand in every faithful left (resp. right) module (see, e.g., Tachikawa [30] for details). In his recent paper [15], K. Masaike showed that a left QF-3 ring R is also right QF-3 if and only if it contains an idempotent f such that RfR is a minimal dense left ideal and every finitely solvable system of congruences $\{x \equiv fx_{\lambda} \pmod{I_{\lambda}}\}_{\lambda \in \Lambda}$ with each I_{λ} a left ideal is solvable. Generalizing this, we will provide a characterization of left and right QF-3 rings. To do so, we will introduce the notion of τ -absolutely pure rings in Section 1 and the notion of τ -semicompact modules in Section 2, where " τ -" means "relative to Lambek torsion theory". With those notions, we will show that a ring R is left and right QF-3 if and only if it is τ -absolutely pure, left and right τ -semicompact and contains idempotents e, f such that ReR and RfR are minimal dense right and left ideals, respectively.

Throughout this note, R stands for an associative ring with identity, modules are unitary modules, and torsion theories are Lambek torsion theories. Sometimes, we use the notation $_{R}X$ (resp. X_{R}) to stress that the module X considered is a left (resp. right) R-module. We denote by Mod R (resp. Mod R^{op}) the category of left (resp. right) R-modules and by $()^*$ both the R-dual functors. For a module X, we denote by E(X) its injective envelope and by $\varepsilon_X \colon X \to X^{**}$ the usual evaluation map. Recall that a module X is said to be torsionless if ε_x is a monomorphism, and to be reflexive if ε_x is an isomorphism. Note that for a submodule X' of a module X, if X/X' is torsionless then Ker $\varepsilon_x \subset X'$. For an $X \in Mod R$, we denote by $\tau(X)$ its Lambek torsion submodule. Namely, $\tau(X)$ denotes a submodule of X such that $\operatorname{Hom}_{R}(\tau(X), E(R)) = 0$ and $X/\tau(X)$ is cogenerated by E(R). For also an $M \in \text{Mod } R^{\text{op}}$, we denote by $\tau(M)$ its Lambek torsion submodule.