UNLINKING TWO COMPONENT LINKS

Peter KOHN

(Received February 6, 1991)

1. Introduction

We define a knot to be a piecewise linear embedding of a circle, S^{1}, in either Euclidean 3-space, \boldsymbol{R}^{3}, or the 3-sphere, S^{3}. A link is defined to be the disjoint union of circles in \boldsymbol{R}^{3} or S^{3}. A natural question to ask about a knot or link is: how can this be untied? Here by "untying" we mean, how many crossings need to be changed to transform our knot or link into a collection (with one element in the case of a knot) of trivial circles. Formally, we define the unknotting number, $u(K)$, for a knot K (or the unlinking number for a link) to be the minimal number of crossing changes necessary to convert the diagram of K into a diagram of a trivial knot (link). This minimum is taken over all diagrams of the knot or link.

A list of unknotting numbers has been complied by Y. Nakanishi [8] for prime knots having 9 or fewer crossings. Of the 84 knots listed, the unknotting numbers of nearly one quarter were unknown in 1981. In the last decade, due to techniques by Lickorish [6], Kanenobu and Murakami [4] and others, the number of these small knots with unknown unknotting numbers has been reduced to about a half dozen. In this paper we provide a list of unlinking numbers for the "small" classical two component links. These are the prime, nonsplit links which have diagrams with 9 or fewer crossings.

I would like to thank Professor Cameron Mc.A. Gordon of The University of Texas at Austin for his help and support in the preparation of this paper.

2. Four methods for determining $\boldsymbol{u}(\boldsymbol{L})$

We begin with a link, L, with components A_{L} and B_{L}. Individually the components of L may be unknotted. In general, however, $u\left(A_{L}\right) \geq 0$ and $u\left(B_{L}\right)$ ≥ 0. We shall use $l k\left(A_{L}, B_{L}\right)$ to denote the linking number of A_{L} and B_{L}.

To determine the unlinking number of a link we need both upper and lower bounds. The upper bound is found experimentally by examining diagrams of the link. Generally, in our small links, we will see that a sharp upper bound can be found in a minimal diagram of the link. This is a diagram with the minimal number of crossings, where again this minimum is taken over all

