COMPACT SIMPLE LIE ALGEBRAS WITH TWO INVOLUTIONS AND SUBMANIFOLDS OF COMPACT SYMMETRIC SPACES II

HIROO NAITOH*

(Received February 7, 1992)

Introduction. This is a continuation of Part I, which appears in the same Journal.

In the previous paper we take a Grassmann bundle $G_s(TM)$ over a compact simply connected irreducible riemannian symmetric space M and consider a G-orbit \mathcal{V} in $G_s(TM)$ by the isometry group G of M. For each \mathcal{V} we can define a class of submanifolds in M, so is called, a \mathcal{V} -geometry. We moreover assume that \mathcal{V} is a G-orbit which contains an s-dimensional strongly curvature-invariant subspace. Then \mathcal{V} corresponds to a PSLA $(\mathfrak{g}, \sigma, \tau)$ of compact semisimple Lie algebra \mathfrak{g} and two commutative involutions σ, τ . PSLA's are algebraically divided into those of inner type and those of outer type.

Our aim in this article is to prove the following

Main Theorem. Let M be an irreducible compact simply connected riemannian symmetric space and \mathcal{V} a G-orbit of inner type. Then the Lie algebra \mathfrak{g} of Killing vector fields on M is compact simple and the following hold for \mathfrak{g} of classical type:

(1) Let g be the Lie algebra of type A_i , $l \ge 1$. In this case the \mathbb{C} -geometry admits non-totally geodesic \mathbb{C} -submanifolds if and only if it is one of the \mathbb{C} -geometries in Example 2, (1).

(2) Let g be the Lie algebra of type B_l , $l \ge 2$. In this case the \mathbb{V} -geometry admits non-totally geodesic \mathbb{V} -submanifolds if and only if it is one of the \mathbb{V} -geometries in Example 1 (m : even and r : even).

(3) Let g be a Lie algebra of type C_1 , $l \ge 3$. In this case the \heartsuit -geometry admits non-totally geodesic \heartsuit -submanifolds if and only if it is one of the \heartsuit -geometries in Example 3, (2).

(4) Let g be the Lie algebra of type D_l , $l \ge 4$. In this case the \mathbb{CV} -geometry does not admit non-totally geodesic \mathbb{CV} -submanifolds.

Examples appeared here are known ones as CV-geometries in rank one sym-

^{*} Partially supported by the Grant-in-aid for Scientific Research, No. 03640068