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1. Introduction

This paper deals with viscosity solutions of nonlinear degenerate elliptic
partial differential equations (PDEs) involving nonlocal operators.

To begin with, we show model problems. Let Ω,dRN be a bounded do-
main.
Model I. (Integro-differential equation with obstacle)

τnax{Lu—fy u—φ} = 0 in Ω ,
(1.1)

u(x)=[ u(y)Q{dy,x) for
JQ

where L is an integro-differential operator of the form:

Lu{x) = - Σ^(*) «„(*)+«(*) u(x)+X(x) \ (u(x)-u(y)) Q(dy, x),\
JΩ

and ζ)( , x) is a probability measure in Ω for Λ G Π .
Model II. (Second order elliptic PDE with implicit obstacle)

ί max{Lz/—/, u—Mu} = 0 in Ω ,

1 max{w—g, u—Mu} = 0 on 9Ω ,

where L denotes the following linear (possibly degenerate) second order ellip-
tic operator:

Lu(x) = -Έaij(x)uXiXj(x)+ ^bi(x)ux.(x)+c(x)u(x)

and Mu is a nonlocal term defined by

Mu(x) = inf ik(ξ)+u(x+ξ)\ξ<Ξ(R+)N, x+ξ(=Π} .

Model I is derived from the optimal stopping problem for piecewise-deter-
ministic(PD) processes. S.M. Lenhart-Y.C. Liao [8] discussed the optimal


