NOTE ON ALMOST RELATIVE PROJECTIVES AND ALMOST RELATIVE INJECTIVES

MANABU HARADA

(Received April 19, 1990)

This paper is supplemental to [4], [6] and [7]. We shall show, under assumption of finite length, that when we study almost relative projectives, we may restrict ourselves only to certain special homomorphisms h in the definition of almost relative projectives [6] (see §1). In the similar manner to proof of the above fact, we shall give a criterion for an R-module M_0 to be almost M_1 projective, where R is a perfect ring and M_1 is an indecomposable R-module. We shall obtain, in §3, a generalization of [6], Theorem 1, where direct sums of local modules were studied. In this section we shall show the same property on direct sum of indecomposable modules. \$2 and 4 are the dual versions of \$31 and 3.

1. Almost relative simple-projectives

In this paper we always assume that R is a ring with identity and that every module is a unitary right R-module. Let M be an R-module. We denote the socle, the Jacobson radical, and the length of M by Soc(M), J(M) and |M|, respectively. If $End_R(M)$ is a local ring, we say M is an LE module. We recall here the definition of almost relative projectives [6]. Let M and N be R-modules. For any diagram with row exact:

(1)
$$\begin{array}{cccc}
\tilde{h} & & \\
M_1 & \cdots & N \\
& & & & \\
\tilde{h} & & \downarrow h \\
& & M & \xrightarrow{\nu} & M/K \longrightarrow 0
\end{array}$$

if there exists $\tilde{h}: N \to M$ with $\nu \tilde{h} = h$ or there exist a non-zero direct summand M_1 of M and $\tilde{h}: M_1 \to N$ with $h\tilde{h} = \nu | M_1$, then N is called *almost M-projective*. (if we obtain only the first case, we say that N is *M-projective* [2]).

Here we shall introduce a little weaker condition than the above. In the diagram (1) we take only the $h': N \rightarrow M/K$ whose image is simple. If for any h' above there exists \tilde{h} in the definition, then we say N is almost M-simple-