Komatsu, K. Osaka J. Math. 29 (1992), 329-337

A BOUNDARY LINK IS TRIVIAL IF THE LUSTERNIK-SCHNIRELMANN CATEGORY OF ITS COMPLEMENT IS ONE

KAZUSHI KOMATSU

(Received June 7, 1991)

1. Introduction

The Lusternik-Schnirelmann category cat(X) of a space X is the least integer n such that X can be covered by n+1 open subsets each of which is contractible to a point in X. In particular, cat(X) is a homotpoy type invariant and $cat(S^n)=1$. We know that $\pi_1(X)$ is a free group if X is a manifold and $cat(X) \leq 1$ (cf. [2], [3] and [5]).

A locally flat knot (S^{n+2}, S^n) is topologically unknotted if and only if the category of its complement is one [10]. In fact, $S^{n+2}-S^n \cong S^1$ if and only if $\operatorname{cat}(S^{n+2}-S^n)=1$. We see also that a smooth knot (S^{n+2}, S^n) is unknotted if and only if $\operatorname{cat}(S^{n+2}-S^n)=1$ when $n \neq 2$ ([7] for $n \geq 4$, [15] for n=3 and [12] for n=1).

We will generalize this result to the smooth *m*-component links. A smooth (or locally flat) *m*-component link *L* stands for *m* smoothly (or locally flatly) embedded disjoint *n*-spheres $L_1 \cup \cdots \cup L_m$ in S^{n+2} . A smooth (or locally flat) *m*-component link is called trivial if it bounds *m* smoothly (or locally flatly) embedded disjoint (n+1)-disks; boundary if it bounds a Seifert man ifold which consists of *m* disjoint compact smooth (or locally flat) (n+1)-submanifolds with connected boundary. Let $N_i = N(L_i)$ $(i=1, \dots, m)$ be tubular neighborhoods of L_i which do not intersect each other. The (n+2)-dimensional compact manifold $E = S^{n+2} - \bigcup$ Int $N(L_i)$ with boundary $\partial E = \bigcup \partial N_i$ is called a link exterior and is homotopy equivalent to the link complement $S^{n+2}-L$.

In this paper we will show the following theorem by applying the unlinking criterion of boundary links due to Gutiérrez [6].

Theorem 1. Let L be a smooth m-component boundary link in S^{n+2} . Suppose that $n \neq 2$. Then L is trivial if and only if $cat(S^{n+2}-L)=1$.

If L is trivial, $S^{n+2} - L \simeq (\bigvee_m S^1) \lor (\bigvee_{m-1} S^{n+1})$. We have only to prove the if-part. On the other hand a classical link L is trivial if $\pi_1(S^3 - L)$ is free by the loop theorem [12]. Since $\operatorname{cat}(S^{n+2}-L)=1$ implies that $\pi_1(S^{n+2}-L)$ is free,