A BOUNDARY LINK IS TRIVIAL IF THE LUSTERNIKSCHNIRELMANN CATEGORY OF ITS COMPLEMENT IS ONE

Kazushi KOMATSU

(Received June 7, 1991)

1. Introduction

The Lusternik-Schnirelmann category $\operatorname{cat}(X)$ of a space X is the least integer n such that X can be covered by $n+1$ open subsets each of which is contractible to a point in X. In particular, $\operatorname{cat}(X)$ is a homotpoy type invariant and $\operatorname{cat}\left(S^{n}\right)=1$. We know that $\pi_{1}(X)$ is a free group if X is a manifold and $\operatorname{cat}(X) \leqq 1$ (cf. [2], [3] and [5]).

A locally flat knot (S^{n+2}, S^{n}) is topologically unknotted if and only if the category of its complement is one [10]. In fact, $S^{n+2}-S^{n} \simeq S^{1}$ if and only if $\operatorname{cat}\left(S^{n+2}-S^{n}\right)=1$. We see also that a smooth knot $\left(S^{n+2}, S^{n}\right)$ is unknotted if and only if $\operatorname{cat}\left(S^{n+2}-S^{n}\right)=1$ when $n \neq 2$ ([7] for $n \geqq 4$, [15] for $n=3$ and [12] for $n=1$).

We will generalize this result to the smooth m-component links. A smooth (or locally flat) m-component link L stands for m smoothly (or locally flatly) embedded disjoint n-spheres $L_{1} \cup \cdots \cup L_{m}$ in S^{n+2}. A smooth (or locally flat) m-component link is called trivial if it bounds m smoothly (or locally flatly) embedded disjoint $(n+1)$-disks; boundary if it bounds a Seifert man ifold which consists of m disjoint compact smooth (or locally flat) $(n+1)$-submanifolds with connected boundary. Let $N_{i}=N\left(L_{i}\right)(i=1, \cdots, m)$ be tubular neighborhoods of L_{i} which do not intersect each other. The ($n+2$)-dimensional compact manifold $E=S^{n+2}-\cup \operatorname{Int} N\left(L_{i}\right)$ with boundary $\partial E=\cup \partial N_{i}$ is called a link exterior and is homotopy equivalent to the link complement $S^{n+2}-L$.

In this paper we will show the following theorem by applying the unlinking criterion of boundary links due to Gutierrez [6].

Theorem 1. Let L be a smooth m-component boundary link in S^{n+2}. Suppose that $n \neq 2$. Then L is trivial if and only if $\operatorname{cat}\left(S^{n+2}-L\right)=1$.

If L is trivial, $S^{n+2}-L \simeq\left(\vee_{m} S^{1}\right) \vee\left(\vee_{m-1} S^{n+1}\right)$. We have only to prove the if-part. On the other hand a classical link L is trivial if $\pi_{1}\left(S^{3}-L\right)$ is free by the loop theorem [12]. Since $\operatorname{cat}\left(S^{n+2}-L\right)=1$ implies that $\pi_{1}\left(S^{n+2}-L\right)$ is free,

