Kawauchi, A. Osaka J. Math. 29 (1992), 299-327

ALMOST IDENTICAL IMITATIONS OF (3, 1)-DIMENSIONAL MANIFOLD PAIRS AND THE BRANCHED COVERINGS

AKIO KAWAUCHI

(Received May 30, 1991)

0. Introduction

By a good (3, 1)-manifold pair (M, L) (or a good 1-manifold L in a 3-manifold M), we mean that M is a compact connected oriented 3-manifold and L is a compact proper smooth 1-submanifold of M such that any 2-sphere component of the boundary ∂M meets L with at least three points. For a compact connected oriented 3-manifold E, let $\partial_0 E$ be the union of all tori in ∂E and $\partial_1 E = \partial E - \partial_0 E$ $\partial_0 E$. Let int $E = E - \partial E$ and int₀ $E = E - \partial_0 E$. A compact connected oriented 3-manifold E is said to be hyperbolic if int E (when $\partial_1 E = \emptyset$) or the double D (int₀ E) pasting along $\partial_1 E$ (when $\partial_1 E \neq \emptyset$) has a complete Riemannian structure of constant curvature -1. Then we define the volume Vol E of E to be the hyperbolic volume Vol (int E) (when $\partial_1 E = \emptyset$) or the half hyperbolic volume Vol $(D(int_0 E))/2$ (when $\partial_1 E \neq \emptyset$), and the *isometry group* Isom E of E to be the hyperbolic isometry group Isom (int E) (when $\partial_1 E = \emptyset$) or the quotient by τ of the following subgroup $\{f \in \text{Isom}(D(\text{int}_0 E)) | f\tau = \tau f\}$ (when $\partial_1 E \neq \emptyset$), where τ denotes the unique isometry of $D(int_0 E)$ induced from the involution of $D(int_0 E)$ interchanging the two copies of $int_0 E$ (cf. [22]). By Mostow rigidity theorem (cf. [23], [24]), Vol E is a topological invariant of E and Isom E is a unique (up to conjugations) finite subgroup of the diffeomorphism group Diff E. Furthermore, there is a natural isomorphism Isom $E \cong \operatorname{Out} \pi_1(E) = \operatorname{Aut} \pi_1(E)/2$ Inn $\pi_1(E)$ and for any finite subgroup G of Diff E there is a natural monomorphism $G \rightarrow \text{Out } \pi_1(E)$, so that G is isomorphic to a subgroup of Isom E. In a previous paper [8], for each good (3,1)-manifold pair (M, L), we have constructed an infinite family of almost identical imitations (M, L^*) of (M, L) such that the exterior $E(L^*, M)$ of L^* in M is hyperbolic. In this paper, we shall strengthen this result from the viewpoint of regular branched coverings.*)

DEFINITION: A good (3,1)-manifold pair (M, L) has the hyperbolic covering property if for any component unions L_0 , L_1 (possibly, \emptyset) of L with $L_1 = L - L_0$,

^{*)} By coverings, we will mean connected coverings.