Ihara, Y. and Kaneko, M. Osaka J. Math. 29 (1992), 1-19

PRO-/ PURE BRAID GROUPS OF RIEMANN SURFACES AND GALOIS REPRESENTATIONS¹

To the memory of the late Professor Michio Kuga

YASUTAKA IHARA AND MASANOBU KANEKO

(Received October 30, 1990)

Introduction

Let X be a smooth irreducible algebraic curve of genus g over a field k of characteristic 0, and l be a prime number. For each $n=1, 2, \dots$, consider the configuration space

$$Y_n = F_{0,n} X = \{(p_1, \dots, p_n) \in X^n; p_i \neq p_j \text{ for } i \neq j\}$$

Then the Galois group $\operatorname{Gal}(\overline{k}/k)$ acts outerly on the pro-*l* fundamental group $P_n = \pi_1^{pro-l}(Y_n)$;

$$\varphi_n \colon \operatorname{Gal}(\overline{k}/k) \to \operatorname{Out} P_n$$
.

The main purpose of this paper is to prove that φ_n has the same kernel for all sufficiently large $n \ge n_0 = n_0(X/k, l)$ (Theorem 2, §4). For example, we can take $n_0=1$ if $g \ge 1$ and X is affine, $n_0=2$ if $g \ge 1$, and $n_0=4$ in all cases. This theorem is based on some group theoretic property of Out P_n (Theorem 1, §1).

The present work grew out of our previous work [7], [8] and [6].

1. The statement of Theorem 1

1.1. Let X^{cpt} be a compact Riemann surface of genus $g \ge 0$, and $X = X^{cpt} \setminus \{a_1, \dots, a_r\}$ $(r \ge 0)$ be the complement of r distinct points a_1, \dots, a_r in X^{cpt} . For each integer $n \ge 1$, consider the configuration space

$$Y_n = F_{0,n} X = \{(p_1, \dots, p_n) \in X^n; p_i \neq p_j \text{ for } i \neq j\},\$$

and let $\pi_1(Y_n, b)$ be its fundamental group with a base point $b=(b_1, \dots, b_n)$. It is the pure braid group of X with n strands. For each i $(1 \le i \le n, n \ge 2)$, the projection

^{1.} This work was supported by Grant-in-Aid for Scientific Research, The Ministry of Education, Science and Culture.