Takeuchi, M. Osaka J. Math. 28 (1991), 153-161

PROPER DUPIN HYPERSURFACES GENERATED BY SYMMETRIC SUBMANIFOLDS

Dedicated to Professor Tadashi Nagano on his sixtieth birthday

MASARU TAKEUCHI

(Received March 6, 1990)

Introduction

A connected oriented hypersurface M of the space form $\overline{M} = E^n$, S^n or H^n is called a Dupin hypersurface, if for any curvature submanifold S of M the corresponding principal curvature λ is constant along S. Here by a curvature submanifold we mean a connected submanifold S with a smooth function λ on S such that for each point $x \in S$, $\lambda(x)$ is a principal curvature of M at x and T_xS is equal to the principal subspace in T_xM corresponding to $\lambda(x)$. A Dupin hypersurface is said to be proper, if all principal curvatures have locally constant multiplicities. A connected oriented hypersurface of \overline{M} is called an isoparametric hypersurface, if all principal curvatures are locally constant. Obviously an isoparametric hypersurface is a proper Dupin hypersurface. Another example of a Dupin hypersurface (Pinkall [6]) is an \mathcal{E} -tube $M^{\mathfrak{e}}$ around a symmetric submanifold M of \overline{M} of codimension greater than 1, which is said to be generated by M. Recall that a connected submanifold M of \overline{M} is a symmetric submanifold, if for each point $x \in M$ there is an involutive isometry σ of \overline{M} levaing M and x invariant such that (-1)-eigenspace of $(\sigma_*)_x$ is equal to T_xM . The most simple example is the tube $M^{\mathfrak{e}}$ around a complete totally geodesic submanifold M. This is a complete isoparametric hypersurface with two principal curvatures, which is further homogeneous in the sense that the group

$$\operatorname{Aut}(M^{\mathfrak{e}}) = \{ \phi \in I(\overline{M}); \, \phi(M^{\mathfrak{e}}) = M^{\mathfrak{e}} \}$$

acts transitively on $M^{\mathfrak{e}}$. Here $I(\overline{M})$ denotes the group of isometries of \overline{M} . In this note we will determine all the symmetric submanifolds whose tube is a proper Dupin hypersurface, in the following theorem.

Theorem. Let M be a non-totally geodesic symmetric submanifold of a space form \overline{M} of codimension greater than 1. Then the tube $M^{\mathfrak{e}}$ around M is a proper Dupin hypersurface if and only if either

(i) M is a complete extrinsic sphere of \overline{M} (see Section 2 for definition) of codimen-