PROPER DUPIN HYPERSURFACES GENERATED BY SYMMETRIC SUBMANIFOLDS

Dedicated to Professor Tadashi Nagano on his sixtieth birthday

Masaru TAKEUCHI

(Received March 6, 1990)

Introduction

A connected oriented hypersurface M of the space form $\bar{M}=E^{n}, S^{n}$ or H^{n} is called a Dupin hypersurface, if for any curvature submanifold S of M the corresponding principal curvature λ is constant along S. Here by a curvature submanifold we mean a connected submanifold S with a smooth function λ on S such that for each point $x \in S, \lambda(x)$ is a principal curvature of M at x and $T_{x} S$ is equal to the principal subspace in $T_{x} M$ corresponding to $\lambda(x)$. A Dupin hypersurface is said to be proper, if all principal curvatures have locally constant multiplicities. A connected oriented hypersurface of \bar{M} is called an isoparametric hypersurface, if all principal curvatures are locally constant. Obviously an isoparametric hypersurface is a proper Dupin hypersurface. Another example of a Dupin hypersurface (Pinkall [6]) is an ε-tube M^{ε} around a symmetric submanifold M of \bar{M} of codimension greater than 1 , which is said to be generated by M. Recall that a connected submanifold M of \bar{M} is a symmetric submanifold, if for each point $x \in M$ there is an involutive isometry σ of \bar{M} levaing M and x invariant such that (-1)-eigenspace of $\left(\sigma_{*}\right)_{x}$ is equal to $T_{x} M$. The most simple example is the tube M^{ε} around a complete totally geodesic submanifold M. This is a complete isoparametric hypersurface with two principal curvatures, which is further homogeneous in the sense that the group

$$
\operatorname{Aut}\left(M^{\ell}\right)=\left\{\phi \in I(\bar{M}) ; \phi\left(M^{\ell}\right)=M^{e}\right\}
$$

acts transitively on M^{2}. Here $I(\bar{M})$ denotes the group of isometries of \bar{M}. In this note we will determine all the symmetric submanifolds whose tube is a proper Dupin hypersurface, in the following theorem.

Theorem. Let M be a non-totally geodesic symmetric submanifold of a space form \bar{M} of codimension greater than 1 . Then the tube M^{8} around M is a proper Dupin hypersurface if and only if either
(i) M is a complete extrinsic sphere of \bar{M} (see Section 2 for definition) of codimen-

