Miyanishi, M. and Sugie, T. Osaka J. Math. 28 (1991), 1-26

Q-HOMOLOGY PLANES WITH C-FIBRATIONS**

Dedicated to Professor Heisuke Hironaka on his sixtieth birthday

MASAYOSHI MIYANISHI and TOHRU SUGIE

(Received November 13, 1989)

Introduction. Let X be a nonsingular algebraic surface defined over the complex number field C. We call X a homology plane (resp. a Q-homology plane) if the homology groups $H_i(X; Z)$ (resp. $H_i(X; Q)$) vanish for $1 \le i \le 4$. We can also define a logarithmic homology plane X as a normal affine surface which has only quotient singularities and $H_i(X; Z) = 0$ for all i > 0.

In our previous paper [7], Q-homology planes with Kodaira dimension less than 2 are classified and it is shown that there are many Q-homology planes which have non-trivial automorphisms of finite order. A structure theorem is given on logarithmic homology planes of Kodaira dimension $-\infty$ and 1. In particular, it is proved that a logarithmic homology plane of Kodaira dimension $-\infty$ is isomorphic to one of the following surfaces:

- (1) C^{2} ;
- (2) C^2/G , where G is a small finite subgroup of GL(2, C);

(3) A surface X with an A^1 -fibration $\rho: X \to A^1$ such that every fiber is irreducible and that there are N multiple fibres H_1, \dots, H_N with respective multiplicities d_1, \dots, d_N , each of them carrying a cyclic quotient singular point of type d_i/e_i , where N is an arbitrary positive integer.

Similarly, logarithmic homology planes of Kodaira dimension 1 are studied by making use of C^* -fibrations.

In the present paper we are interested in homology planes with $\kappa=2$. An example of a contractible algebraic surface with $\kappa=2$, which is a special case of a homology plane, was first given by C.P. Ramanujam [9] and many examples were recently found by Gurjar-Miyanishi [2], Miyanishi-Sugie [6] and Petrietom Dieck [11, 12]. We constructed in [6] homology planes by the blowing-up method from the configurations of two curves on the projective plane P^2 and Petrie-tom Dieck [11] from the line arrangements on P^2 . In order to construct further examples, we propose to think of algebraic surfaces with fibrations of curves. As a natural extension of the *C*-fibrations and the *C**-fibrations which are so effective in the cases of $\kappa=-\infty$ and 1, we shall look into a surface with