Kawauchi, A. Osaka J. Math. 26 (1989), 743-758

ALMOST IDENTICAL IMITATIONS OF (3, 1)-DIMENSIONAL MANIFOLD PAIRS

Akio KAWAUCHI

Dedicated to Professor Fujitsugu Hosokawa on his 60th birthday

(Received March10, 1989)

By a 3-manifold M, we mean a compact connected oriented 3-manifold throughout this paper. Let $\partial_0 M$ be the union of torus components of ∂M and $\partial_1 M = \partial M - \partial_0 M$. In the case that $\partial_1 M = \emptyset$, if Int M has a complete Riemannian structure with constant curvature -1 and with finite volume, then we say that M is hyperbolic and we denote its volume by Vol M. Next we consider the case that $\partial_1 M \neq \emptyset$. Then the double, $D_1 M$, of M pasting two copies of M along $\partial_1 M$ has $\partial_1 D_1 M = \emptyset$. If $D_1 M$ is hyperbolic in the sense stated above, then we say that M is hyperbolic and we define the volume, Vol M, of this M by Vol $M = Vol D_1 M/2$. In this latter case, M is usually said to be hyperbolic with $\partial_1 M$ tatally geodesic (cf. [**T-1**]), but we use this simple terminology throughout this paper. When M is hyperbolic, ∂M has no 2-sphere components and by Mostow 'rigidity theorem (cf. [T-2], [T-3]), Vol M is a topological invariant of By a 1-manifold in M, we mean a compact smooth 1-submanifold L of MM. with $\partial L = L \cap \partial M$ and the pair (M, L) is simply called a (3,1)-manifold pair. A 1-manifold L in M is called a link if $\partial L = \emptyset$, a tangle if L has no loop components, and a good 1-manifold if $|L \cap S^2| \ge 3$ for any 2-sphere component S^2 of ∂M . A (3,1)-manifold pair (M, L) is also said to be good if L is a good 1manifold in *M*. In [Kw-1], we defined the notions of imitation, pure imitation and normal imitation for any general manifold pair. In Section 1 we shall define a notion which we call an *almost identical imitation* (M, L^*) of (M, L), for any good (3,1)-manifold pair (M, L). Roughly speaking, this imitation is a normal imitation with a special property that if $q: (M, L^*) \rightarrow (M, L)$ is the imitaiton map, then $q|(M, L^*-a^*): (M, L^*-a^*) \rightarrow (M, L-a)$ is ∂ -relatively homotopic¹ to a diffeomorphism for any connected components a^* , a of L^* , L with $qa^*=a$. Let P be a polyhedron in a 3-manifold M. For a regular neighborhood N_P of P in M (meeting ∂M regularly), the diffeomorphism type of $E(P, M) = cl_M(M - N_P)$ is uniquely determined by the topological type of the

¹ This homotopy can be taken as a one-parameter family of normal imitation maps.