Kawata S.

Osaka J. Math.
26 (1989) 671-678

MODULE CORRESPONDENCE IN AUSLANDER-REITEN QUIVERS FOR FINITE GROUPS

Shigeto KAWATA

(Received February 23, 1988)

1. Introduction

Let G be a finite group and k be a field of characteristic $p>0$. Let Θ be a connected component of the stable Auslander-Reiten quiver $\Gamma_{s}(k G)$ of the group algebra $k G$ and set $V(\Theta)=\{v x(M) \mid M$ is an indecomposable $k G$-module in $\Theta\}$, where $v x(M)$ denotes the vertex of M. As we shall see in Proposition 3.2 below, if Q is a minimal element in $V(\Theta)$, then $Q \leq_{G} H$ for all $H \in V(\Theta)$. In particular we see that Q is uniquely determined up to conjugation in G.

Let $N=N_{G}(Q)$ and let f be the Green correspondence with respect to (G, Q, N). Choose an indecomposable $k G$-module M_{0} in Θ with Q its vertex. Let Δ be the connected component of $\Gamma_{s}(k N)$ containing $f M_{0}$. The purpose of this paper is to show that there is a subquiver Λ of Δ and a graph isomorphism $\psi: \Lambda \rightarrow \Theta$ such that ψ^{-1} behaves like the Green correspondence f as a bijective map between modules in Λ and those in Θ. In particular Θ is isomorphic with a subquiver of Δ. Also it will be shown that if $H \in V(\Theta)$, then $H \leq{ }_{G} N_{G}(Q)$.

The notation is almost standard. All the modules considered here are finite dimensional over k. We write $W \mid W^{\prime}$ for $k G$-modules W and W^{\prime}, if W is isomorphic to a direct summand of W^{\prime}. For an indecomposable non-projective $k G$-module M, we write $\mathcal{A}(M)$ to denote the Auslander-Reiten sequence terminating at M. A sequence $M_{0}-M_{1}-\cdots-M_{t}$ of indecomposable $k G$ modules $M_{i}(0 \leq i \leq t)$ is said to be a walk if there exists either an irreducible map from M_{i} to M_{i+1} or an irreducible map from M_{i+1} to M_{i} for $0 \leq i \leq t-1$. Concerning some basic facts and terminologies used here, we refer to [1], [5], [6] and [8].

The author would like to thank Dr. T. Okuyama for his helpful advice.

2. Preliminaries

To begin with, we recall some basic facts on relative projectivity.
Let H be a subrgoup of G and $\left\{g_{i}\right\}_{i=1}^{n}$ be a right transversal of H in G. If W and W^{\prime} are $k G$-modules, then $\left(W, W^{\prime}\right)^{H}$ denotes the k-space $\operatorname{Hom}_{k H}\left(W, W^{\prime}\right)$.

