MODULE CORRESPONDENCE IN AUSLANDER-REITEN QUIVERS FOR FINITE GROUPS

Shigeto KAWATA

(Received February 23, 1988)

1. Introduction

Let G be a finite group and k be a field of characteristic p>0. Let Θ be a connected component of the stable Auslander-Reiten quiver $\Gamma_s(kG)$ of the group algebra kG and set $V(\Theta) = \{vx(M) | M \text{ is an indecomposable } kG\text{-module in }\Theta\}$, where vx(M) denotes the vertex of M. As we shall see in Proposition 3.2 below, if Q is a minimal element in $V(\Theta)$, then $Q \leq_G H$ for all $H \in V(\Theta)$. In particular we see that Q is uniquely determined up to conjugation in G.

Let $N=N_G(Q)$ and let f be the Green correspondence with respect to (G, Q, N). Choose an indecomposable kG-module M_0 in Θ with Q its vertex. Let Δ be the connected component of $\Gamma_s(kN)$ containing fM_0 . The purpose of this paper is to show that there is a subquiver Λ of Δ and a graph isomorphism $\psi: \Lambda \rightarrow \Theta$ such that ψ^{-1} behaves like the Green correspondence f as a bijective map between modules in Λ and those in Θ . In particular Θ is isomorphic with a subquiver of Δ . Also it will be shown that if $H \in V(\Theta)$, then $H \leq_G N_G(Q)$.

The notation is almost standard. All the modules considered here are finite dimensional over k. We write W | W' for kG-modules W and W', if W is isomorphic to a direct summand of W'. For an indecomposable non-projective kG-module M, we write $\mathcal{A}(M)$ to denote the Auslander-Reiten sequence terminating at M. A sequence $M_0 - M_1 - \cdots - M_t$ of indecomposable kG-modules M_i ($0 \le i \le t$) is said to be a walk if there exists either an irreducible map from M_i to M_{i+1} or an irreducible map from M_{i+1} to M_i for $0 \le i \le t-1$. Concerning some basic facts and terminologies used here, we refer to [1], [5], [6] and [8].

The author would like to thank Dr. T. Okuyama for his helpful advice.

2. Preliminaries

To begin with, we recall some basic facts on relative projectivity.

Let *H* be a subroup of *G* and $\{g_i\}_{i=1}^n$ be a right transversal of *H* in *G*. If *W* and *W'* are *kG*-modules, then $(W, W')^H$ denotes the *k*-space Hom_{*kH*}(*W*, *W'*).