
Kanenobu, T.
Osaka J. Math.
26 (1989), 465-482

EXAMPLES ON POLYNOMIAL INVARIANTS
OF KNOTS AND LINKS II

Dedicated to Professor F. Hosokawa on his 60th birthday

TAIZO KANENOBU

(Received April 19, 1988)

Since the discovery of the Jones polynomial in 1984, several polynomial
invariants of the isotopy type of knots and links in a 3-sρhere have been dis-
covered. In general, the relationships among them, together with the classical
Alexander polynomial, are as follows: the (many variable) Alexander polynomial
specializes to the reduced Alexander polynomial, the 2-variable Jones polyno-
mial, which is a skein invariant, specializes to both the reduced Alexander and
the Jones polynomials, and the Kauffman polynomial specializes to both the
Jones and the Q polynomials. Remember [17, Fig. 4]. For a 3-braid knot or
link, the 2-variable Jones and the 0 polynomials are determined by the reduced
Alexander polynomial and the exponent sum [10, 22]. This is generalized to a
formula for the 2-variable Jones polynomial [21]. For a 2-bridge knot or link,
the Q polynomial is determined by the Jones polynomial [14]. The purpose of
this paper is to consider the independency of the polynomial invariants of the
2-bridge knots and links and the closed 3-braids.

In the previous paper [13], the following examples for the 2-bridge knots
and links are constructed: arbitrarily many 2-bridge knots with the same Jones
polynomial, arbitrarily many skein equivalent 2-bridge links with the same 2-
variable Alexander polynomial, and a pair of skein equivalent 2-bridge links with
distinct 2-variable Alexander polynomials. In Sect. 3, we construct: arbitrarily
many skein equivalent fibered 2-bridge knots (Theorem 1), arbitrarily many skein
equivalent 2-bridge links with mutually distinct 2-variable Alexander polyno-
mials (Theorem 2), and arbitrarily many 2-bridge links with the same 2-variable
Alexander polynomial but mutually distinct Jones polynomials (Theorem 3).

In Sect. 4, we construct the following examples concerning the Kauffman
polynomial of the 2-bridge knots and links: a pair of skein equivalent 2-bridge
knots with the same Kauffman polynomial (Theorem 4), a pair of 2-bridge
knots with the same Kauffman polynomial but distinct Alexander polynomials
(Theorem 5), a pair of skein equivalent 2-bridge links with the same Kauffman
and 2-variable Alexander polynomials (Theorem 6), and a pair of skein equivalent


