UNITARY REPRESENTATIONS AND A GENERAL VANISHING THEOREM FOR (0, r)-COHOMOLOGY

FLOYD L. WILLIAMS

(Received June 26, 1987)

1. Introduction

Let X=G/K be a Hermitian symmetric space where K is a maximal compact subgroup of a connected non-compact semisimple Lie group G. We assume that G has a finite center. Let $H \subset K$ be a Cartan subgroup of G, let g, k, h be the complexifications of the Lie algebras g_0 , k_0 , h_0 of G, K, H, let $\Delta = \Delta(g, h)$ be the set of non-zero roots of (g, h), and let $\Delta^+ \subset \Delta$ be a system of positive roots compatible with the G-invariant complex structure on X. That is, if $g_0 = k_0 + p_0$ is a Cartan decomposition of g_0 then the splitting of the complexified tangent space $p = p \mathcal{E}$ of X at the origin is given by

$$(1.1) p = p^+ \oplus p^- \text{ where } p^{\pm} = \sum_{\alpha \in \Lambda^{\pm}} g_{\pm \alpha}$$

for g_{β} the root space of $\beta \in \Delta$ and $\Delta_n^+ = \Delta^+ \cap \Delta_n$, Δ_n = the set of noncompact roots in Δ . Let $\Delta_k^+ = \Delta^+ \cap \Delta_k$ where Δ_k = the set of compact roots in Δ and let $\langle Q \rangle$ be the sum of roots in Q for $Q \subset \Delta$. In particular we set $2\delta = \langle \Delta^+ \rangle$ as usual, and then we can define the following subset of the dual space h^* of h: for L the character lattice of H:

(1.2)
$$F'_{0} = \{ \text{integral forms } \Lambda \text{ in } L | (\Lambda + \delta, \alpha) \neq 0 \text{ for each } \alpha \text{ in } \Delta \text{ and } (\Lambda + \delta, \alpha) > 0 \text{ for each } \alpha \text{ in } \Delta_{k}^{+} \}.$$

Now let $\tau \in \hat{K}$ be an irreducible unitary representation of K with highest weight Λ relative to the positive system Δ_k^+ for (k,h). The induced homogeneous vector bundle $E_{\tau} = G \times_K V_{\tau}$ over X has a holomorphic structure (here V_{τ} is the representation space of τ). Let Γ be a fixed torsion free, co-compact, discrete subgroup of G. Then given $\tau \in \hat{K}$, there is a natural sheaf $\theta_{\tau}(\Gamma)$ over $X_{\Gamma} = \Gamma \setminus X$ generated by the presheaf: $U \mapsto \text{abelian}$ group of Γ -invariant holomorphic sections of E_{τ} on the inverse image of U under the map $X \to X_{\Gamma}$, where $U \subset X_{\Gamma}$ is an open set. The cohomology groups $H^*(X_{\Gamma}, \theta_{\tau}(\Gamma))$ of X_{Γ} with coefficients in