THE MODULI SPACE OF YANG-MILLS CONNECTIONS OVER A KÄHLER SURFACE IS A COMPLEX MANIFOLD

MITSUHIRO ITOH

(Received June 13, 1984)

1. Introduction

Let M be a compact, connected, oriented Riemannian 4-manifold. Let P be a smooth principal G-bundle over M. For simplicity we assume that the Lie group G=SU(n), $n\geq 2$. An SU(n)-connection A on P is called self-dual (anti-self-dual) if curvature form $F(A)=dA-A\wedge A$ satisfies $*F(A)=\pm F(A)$. Each self-dual (anti-self-dual) connection is characterized as a connection minimizing the Yang-Mills functional $\int_{M} |F|^2 dv$ and then gives a solution to the Yang-Mills equation. That the second Chern class $c_2(\mathfrak{g}^c) < 0(>0)$ for the adjoint bundle \mathfrak{g} of P is a topological restriction to P in order to admit a self-dual (anti-self-dual) connections, namely, the orbit space of self-dual (anti-self-dual) connections with respect to the group \mathcal{G} of gauge transformations has a structure of smooth manifold ([3], [7]).

A Kähler surface M with a Kähler metric g, which is certainly a Riemannian 4-manifold, carries the canonical orientation induced from the complex structure. Relative to this orientation a connection A is anti-self-dual if and only if its curvature is a 2-form of type (1,1) which is primitive (that is, orthogonal to the Kähler form ω). Therefore, by the integrability condition ([3]) each anti-selfdual connection induces a holomorphic structure on the complex adjoint bundle \mathfrak{g}^{c} . Since gauge-equivalent anti-self-dual connections give holomorphic structures which are isomorphic with respect to automorphisms of g^{c} , we have the canonical mapping from \mathcal{M} to the moduli speae of holomorphic structures on \mathbf{g}^{c} . Furthermore an anti-self-dual SU(n)-connection A naturally defines an Einstein-Hermitian structure on the associated holomorphic vector bundle $E = P \times_{SU(n)} C^{n}$. We have also the fact that E is ω -semi-stable in the sense of Mumford and Takemoto ([9]). If A is moreover irreducible, then E is ω -stable. On the other hand, over a nonsingular projective surface the moduli space of holomorphic, rank two vector bundles of fixed Chern classes is a quasi-projective variety ([12]). From these reasons together with an easy observation that the moduli space \mathcal{M}