Kimura, H. and Ohmori, H. Osaka J. Math. 22 (1985), 401-410

A CHARACTERIZATION OF SOME PARTIAL GEOMETRIC SPACES

Dedicated to Professor Hirosi Nagao on his 60th birthday

HIROSHI KIMURA AND HIROYUKI OHMORI

(Received April 17, 1984)

1. Introduction

A partial geometric space S of dimension $m \ge 2$ defined in [2, 6] consists of the sets $\{A_i\}_{i=-1}^{m}$ and the set T such that the following eight axioms are satisfied:

- (1) $A_i \cap A_j = \phi$ whenever $i \neq j$ and $-1 \leq i, j \leq m$.
- (2) $|A_{-1}| = |A_m| = 1.$
- (3) $T \subset \prod_{i=1}^{m} A_{i}$.

The elements of A_i , $-1 \le i \le m$, are called *i* elements of *S*. The elements of *T* are called flags of *S*. There is a property called incidence which is a relation between the elements of *S* based on the flags.

(4) For each *i* element x_i there is a flag $(t_{-1}, \dots, t_m) \in T$ such that $x_i = t_i$, where $-1 \leq i \leq m$.

(5) Whenever $(y_{-1}, \dots, y_m) \in T$ and $(z_{-1}, \dots, z_m) \in T$ and $y_k = z_k$ for some $k, -1 \leq k \leq m$, then there exists a flag $(t_{-1}, \dots, t_m) \in T$, where $t_i = y_i$ for $-1 \leq i \leq k$, and $t_j = z_j$ for $k \leq j \leq m$.

(6) If $x_i \in A_i$ and $x_j \in A_j$, then x_i and x_j have an l intersection $x_l \in A_l$ and an s join $x_s \in A_s$. Here x_i and x_j are said to have an l intersection x_l (sjoin x_s), where $-1 \leq l \leq \min\{i, j\}$ (max $\{i, j\} \leq s \leq m$) if and only if x_l (x_s) is incident with x_i and x_j such that whenever x_n is an n element of S for $-1 \leq n \leq \min\{i, j\}$ (max $\{i, j\} \leq n \leq m$) which is incident with x_i and x_j , then x_n is incident with x_l (x_s) and $-1 \leq n \leq l$ ($s \leq n \leq m$). By the definition, x_i and x_j have unique intersection and unique join.

(7) If $x_{i-1} \in A_{i-1}$ and $x_{i+1} \in A_{i+1}$ are incident, then there are k(i) *i* elements which are incident with x_{i-1} and x_{i+1} , where $2 \leq k(i) < \infty$, for $0 \leq i \leq m-1$. The number k(i) is independent of the choice of x_{i-1} and x_{i+1} , and depends only on *i*. $k(0), k(1), \dots, k(m-1)$ are called the configuration parameters of *S*.

(8) Let $m \ge 2$. If $x_i \in A_i$ and $x_{i+1} \in A_{i+1}$ have an (i-1) intersection x_{i-1} and an s join x_s , where $0 \le i \le m-2$ and $i+2 \le s \le m$, then there are t(i, s, k) i