ETALE ENDOMORPHISMS OF ALGEBRAIC VARIETIES

Dedicated to Professor Minoru Nakaoka on his 60th birthday

Masayoshi MIYANISHI

(Received August 21, 1984)

1. Introduction

Let k be an algebraically closed field of characteristic zero, which we fix as the ground field throughout this article. Let $f: X \rightarrow X$ be an etale endomorphism of an algebraic variety X. Then f is, in particular, a quasi-finite morphism. We shall be concerned with the following:

Problem. Is an étale endomorphism $f: X \rightarrow X$ finite?

If f is set-theoretically injective then f is bijective by Ax's theorem [1, 3]; hence f is an automorphism. If X is complete, f is clearly finite. In the case where X is the affine n-space \boldsymbol{A}_{k}^{n}, the Jacobian conjecture (cf. [2]) is equivalent to showing that $f: X \rightarrow X$ is finite. In the following we assume that X is a nonsingular, non-complete algebraic variety. Our results show that f is an automorphism (hence finite) for a fairly wide class of varieties X, while there are abundant examples of varieties X with non-finite étale endomorphisms.

2. Preliminary result

We recall the logarithmic ramification formula (cf. Iitaka [6]). Let $f: X \rightarrow Y$ be a dominant morphism of nonsingular algebraic varieties. Then there exist nonsingular complete varieties V and W and a dominant morphism $\phi: V \rightarrow W$ satisfying the following conditions:
(1) X and Y are open subsets of V and W, respectively; hence V and W are nonsingular completions of X and Y, respectively;
(2) the boundaries $D:=V-X$ and $\Delta:=W-Y$ are the divisors with simple normal crossings; namely, all irreducible components of D (or Δ) are nonsingular subvarieties of codimension 1 intersecting each other normally at every point of intersection of D (or Δ); we denote by the symbol D (or Δ) the reduced divisor whose support is D (or Δ);
(3) the restriction of ϕ onto X coincides with f; hence $\phi^{-1}(\Delta) \subseteq D$.

Denote by K_{V} (or K_{W}) the canonical divisor of V (or W). The logarithmic ramification formula then asserts that there exists an effective divisor R_{ϕ} such that

