Sumitomo, T. and Tandai, K. Osaka J. Math. 22 (1985), 123–155

ON THE CENTRALIZER OF THE LAPLACIAN OF $P_n(C)$ AND THE SPECTRUM OF COMPLEX GRASSMANN MANIFOLD $G_{2,n-1}(C)$

TAKESHI SUMITOMO AND KWOICHI TANDAI

(Received April 8, 1983)

0. Introduction. The purpose of the present paper is two-fold. The first half of which is to determine the centralizer of the Laplacian Δ of the complex projective space $P_n(C)$ with the Fubini-Study metric g_0 and the other is to calculate explicitly the spectrum of the Grassmann manifold $G_{2,n-1}(C)$ with the canonically normalized invariant metric g_1 , as well as to give an explicit eigenspace decomposition of the Laplacian Δ^{\wedge} on $C^{\infty}(G_{2,n-1}(C))$ as a complex analogue of our previous paper [5].

For this purpose we begin with some preliminaries on the algebra $\mathfrak{D}^*(\boldsymbol{P}_n(\boldsymbol{C}))$ of complex linear differential operators as well as the graded algebra $S^*(\boldsymbol{P}_n(\boldsymbol{C}))$ (resp. bigraded algebra $S^{**}(\boldsymbol{P}_n(\boldsymbol{C}))$) of complex contravariant symmetric tensor fields on $\boldsymbol{P}_n(\boldsymbol{C})$.

The centralizer of Δ in $\mathfrak{D}^*(P_n(C))$ is determined in 2. Theorem 2.1 asserts that it coincides with the subalgebra of $\mathfrak{D}^*(P_n(C))$ generated by all Killing vector fields. The Killing algebra $K^*(P_n(C))$ is introduced as the graded subalgebra of $S^*(P_n(C))$ generated by all Killing vector fields. We also define the Plucker algebra: $K^{**}(P_n(C)) = K^*(P_n(C)) \cap S^{**}(P_n(C))$. In 3 the Radon-Michel transform $\widehat{}: S^{**}(P_n(C)) \to C^{\infty}(G_{2,n-1}(C))$ is introduced. It has the following remarkable properties:

(i) ^ commutes with the Lichnerowicz operator in the sense of Theorem 3.2.

(ii) The Plücker algebra $K^{**}(P_n(C))$ is transformed by $\hat{}$ onto the subalgebra of $C^{\infty}(G_{2,n-1}(C))$ generated by normalized Plücker coordinates.

Theorem 2.1 enables us to obtain an eigenspace decomposition of the Lichnerowicz operator restricted to $K^{**}(P_n(C))$ (Theorem 4.1). In virtue of Theorem 3.2 the eigenspace decomposition of Δ^{\wedge} is obtained by transferring that of the Lichnerowicz operator in $S^{**}(P_n(C))$ to $C^{\infty}(G_{2,n-1}(C))$ by means of the Radon-Michel transform (Theorem 4.2).

Finally, in the appendix we give a sequence of the differential opreators, annihilating eigenfunctions of the Laplacian Δ of $P_n(C)$.