Kado, J. Osaka J. Math. 21 (1984), 683-686

THE FIXED SUBRINGS OF A FINITE GROUP OF AUTOMORPHISMS OF %-CONTINUOUS REGULAR RINGS

JIRO KADO

(Received June 13, 1983)

Let R be an associative ring, G a finite group of automorphisms of R, and let R^{G} be the fixed subring of G on R. A. Page has proved that if R is a left self-injective regular ring and the order |G| of G is invertible in R, then R^{G} is also a left self-injective regular ring [8]. This theorem is very useful when we investigate some structure of a nonsingular ring and the fixed subring of a finite group of automorphisms.

Recently D. Handelman has discovered an \aleph_0 -continuous regular ring which coordinates the lattice of projections of a finite Rickart C^* -algebra as a subring of the maximal quotient ring of its C^* -algebra [4]. We shall prove in this note the following generalization of Page's theorem: if R is a left \aleph_0 continuous, left \aleph_0 -injective regular ring and |G| is invertible in R, then R^G is again a left \aleph_0 -continuous, \aleph_0 -injective regular ring. We shall show as a corollary that if R is a left \aleph_0 -continuous regular ring with $|G|^{-1} \in R$, R^G is a left \aleph_0 -continuous regular ring and S^G is the maximal left \aleph_0 -quotient ring of R^G , where S is the maximal left \aleph_0 -quotient ring of R.

1. Skew group rings

DEFINITION [7]. Let R be a ring with identity element 1 and G a finite group of automorphisms of R. The skew group ring, R*G, is defined to be a free left R-module with basis $\{g: g \in G\}$ and multiplication given as follows: if $r, s \in R$ and $g, h \in G$, then $(rg)(sh) = rs^{g^{-1}}gh$.

DEFINITION [3]. A regular ring R is left \aleph_0 -continuous if the lattice of principal left ideals of R is upper \aleph_0 -continuous. A ring T is left \aleph_0 -injective if every homomorphism from a countably generated left ideal of T into T is extendable to a T-module endomorphism of T. For modules A and B, $A \subset_e B$ implies that A is an essential submodule of B.

A regular ring R has a maximal left \aleph_0 -quotient ring S which is a quotient ring defined by the filter-like set \mathfrak{X} consisting of all countably generated, essen-