ON THE ROBERTELLO INVARIANTS OF PROPER LINKS

Dedicated to Professor Minoru Nakaoka on his 60th birthday

Aкıо KAWAUCHI

(Received September 14, 1982)

Robertello's invariant of a classical knot in [9] was generalized by Gordon in [2] to an invariant of a knot in a Z-homology 3 -sphere, and by the author in [5] to an invariant, $\delta(k \subset S)$, of a knot k in a Z_{2}-homology 3 -sphere S. In this paper, we shall generalize this invariant to two mutually related invariants, $\delta_{0}(L \subset S)$ and $\delta(L \subset S)$, of a proper link L in a Z_{2}-homology 3 -sphere S. In the case of a classical proper link, this δ_{0}-invariant can be considered as an invariant suggested by Robertello in [9, Theorem 2]. A difference between $\delta_{0}(L \subset S)$ and $\delta(L \subset S)$ is that $\delta_{0}(L \subset S)$ is generally an oriented link type invariant, but $\delta(L \subset S)$ is an unoriented link type invariant. A proper link in a Z_{2}-homology 3 -sphere (which is not a Z-homology 3 -sphere) naturally occurs when considering a branched cyclic covering of a 3 -sphere, branched along a certain proper link. (If the number of the components of the link is ≥ 2, the branched covering space can not be a Z-homology 3 -sphere by the Smith theory.) So, we consider a proper link \tilde{L} in a Z_{2}-homology 3 -sphere \widetilde{S}, obtained from a proper link L in a Z_{2}-homology 3 -sphere S by taking a branched cyclic covering, branched along L. When the covering degree is prime, we shall establish a relationship between $\delta(\tilde{L} \subset \tilde{S})$ and $\delta(L \subset S)$ and then a relationship between $\delta_{0}(\tilde{L} \subset \widetilde{S})$ and $\delta_{0}(L \subset S)$.

In Section 1 we define and discuss the slope of a link in a 3 -manifold as a generalization of the slope of a knot in a 3-manifold, introduced in [5]. In Section 2 the δ_{0}-invariant and the δ-invariant are defined and studied. Section 3 deals with relationships between $\delta(\widetilde{L} \subset \widetilde{S})$ and $\delta(L \subset S)$ and between $\delta_{0}(\widetilde{L} \subset \widetilde{S})$ and $\delta_{0}(L \subset S)$.

Throughout this paper spaces and maps will be considered in the piecewise linear category, and notations and conventions will be the same as those of [5] unless otherwise stated.

1. The slope of a link in a 3-manifold

Let M be a connected oriented 3-manifold. Let L be an oriented link with r components in the interior of M. Let $o(L)$ denote the order (≥ 1) of

