DIVISIBILITY BY 16 OF CLASS NUMBER OF QUADRATIC FIELDS WHOSE 2-CLASS GROUPS ARE CYCLIC

YOSHIHIKO YAMAMOTO*

(Received August 5, 1982)

0. Introduction. Let $K = Q(\sqrt{D})$ be the quadratic field with discriminant D, and H(D) and h(D) be the ideal class group of K and its class number respectively. The ideal class group of K in the narrow sense and its class number are denoted by $H^+(D)$ and $h^+(D)$ respectively. We have $h^+(D)=2h(D)$, if D>0 and the fundamental unit $\mathcal{E}_{D}(>1)$ has the norm 1, and $h^{+}(D) = h(D)$, otherwise. We assume, throughout the paper, that |D| has just two distinct prime divisors, written p and q, so that the 2-class group of K (i.e. the Sylow 2-subgroup of $H^+(D)$ because we mean in the narrow sense) is cyclic. Then the discriminant D can be written uniquely as a product of two prime discriminants d_1 and d_2 , $D=d_1d_2$, such that $p|d_1$ and $q|d_2$ (cf. [16], for example).

By Redei and Reichardt [13] (cf. proposition 1.2 below), $h^+(D)$ is divisible by 4 if and only if D belongs to one of the following 6 types:

(R1) D = pq, $d_1 = p$, $d_2 = q$, $p \equiv q \equiv 1 \pmod{4}$, and $\left(\frac{p}{q}\right) = 1 \left(=\left(\frac{q}{p}\right) by$ reciprocity);

(R2) $D=8q, d_1=8 (p=2), d_2=q, and q \equiv 1 \pmod{8};$

(I1) D=-pq, $d_1=-p$, $d_2=q$, $p\equiv 3 \pmod{4}$, $q\equiv 1 \pmod{4}$, and $\left(\frac{-p}{q}\right)=1$ $\left(=\left(\frac{q}{p}\right)$ by reciprocity);

(I2) $D=-8p, d_1=-p, d_2=8 (q=2), and p \equiv 7 \pmod{8};$

- (I3) D = -8q, $d_1 = -8$ (p = 2), $d_2 = q$, and $q \equiv 1 \pmod{8}$;
- (I4) D = -4q, $d_1 = -4$ (p = 2), $d_2 = q$, and $q \equiv 1 \pmod{8}$;

where (---) is the Legendre-Jacobi-Kronecker symbol.

Conditions for $h^+(D)$ to be divisible by 8 have been given by several authors for each case or cases ([1, 2, 3, 5, 6, 7, 8, 9, 11, 12, 15]). Some of them are reformulated in section 3. The purpose of this paper is to give some conditions for the divisibility by 16 of $h^+(D)$ for each case (cf. theorems 5.4, 5.5, 5.6, 5.7, 5.8, and 6.7). The main ideas were announced in [18] and [19].

While in preparation of the manuscript P. Kaplan informed me that theorem 6.7 was proved also by K.S. Williams with a different method and furthermore he gave a congruence for h(-4q) modulo 16 ([17]).

^{*} Reseach supported partly by Grant-in-Aid for Scientific Research.