DIVISIBILITY BY 16 OF CLASS NUMBER OF QUADRATIC FIELDS WHOSE 2-CLASS GROUPS ARE CYCLIC

Yознініко YAMAMOTO*

(Received August 5, 1982)
0. Introduction. Let $K=\boldsymbol{Q}(\sqrt{D})$ be the quadratic field with discriminant D, and $H(D)$ and $h(D)$ be the ideal class group of K and its class number respectively. The ideal class group of K in the narrow sense and its class number are denoted by $H^{+}(D)$ and $h^{+}(D)$ respectively. We have $h^{+}(D)=2 h(D)$, if $D>0$ and the fundamental unit $\varepsilon_{D}(>1)$ has the norm 1 , and $h^{+}(D)=h(D)$, otherwise. We assume, throughout the paper, that $|D|$ has just two distinct prime divisors, written p and q, so that the 2 -class group of K (i.e. the Sylow 2-subgroup of $H^{+}(D)$ because we mean in the narrow sense) is cyclic. Then the discriminant D can be written uniquely as a product of two prime discriminants d_{1} and $d_{2}, D=d_{1} d_{2}$, such that $p \mid d_{1}$ and $q \mid d_{2}$ (cf. [16], for example).

By Redei and Reichardt [13] (cf. proposition 1.2 below), $h^{+}(D)$ is divisible by 4 if and only if D belongs to one of the following 6 types:
(R1) $D=p q, d_{1}=p, d_{2}=q, p \equiv q \equiv 1(\bmod 4)$, and $\left(\frac{p}{q}\right)=1\left(=\left(\frac{q}{p}\right)\right.$ by reciprocity);
(R2) $D=8 q, d_{1}=8(p=2), d_{2}=q$, and $q \equiv 1(\bmod 8)$;
(I1) $D=-p q, d_{1}=-p, d_{2}=q, p \equiv 3(\bmod 4), q \equiv 1(\bmod 4)$, and $\left(\frac{-p}{q}\right)=1$ ($=\left(\frac{q}{p}\right)$ by reciprocity);
(I2) $D=-8 p, d_{1}=-p, d_{2}=8(q=2)$, and $p \equiv 7(\bmod 8)$;
(I3) $D=-8 q, d_{1}=-8(p=2), d_{2}=q$, and $q \equiv 1(\bmod 8)$;
(I4) $D=-4 q, d_{1}=-4(p=2), d_{2}=q$, and $q \equiv 1(\bmod 8)$;
where (-) is the Legendre-Jacobi-Kronecker symbol.
Conditions for $h^{+}(D)$ to be divisible by 8 have been given by several authors for each case or cases ($[1,2,3,5,6,7,8,9,11,12,15]$). Some of them are reformulated in section 3. The purpose of this paper is to give some conditions for the divisibility by 16 of $h^{+}(D)$ for each case (cf. theorems $5.4,5.5$, $5.6,5.7,5.8$, and 6.7). The main ideas were announced in [18] and [19].

While in preparation of the manuscript P. Kaplan informed me that theorem 6.7 was proved also by K.S. Williams with a different method and furthermore he gave a congruence for $h(-4 q)$ modulo 16 ([17]).

[^0]
[^0]: * Reseach supported partly by Grant-in-Aid for Scientific Research.

