Hiramine, Y. Osaka J. Math. 20 (1983), 735-746

AUTOMORPHISMS OF p-GROUPS OF SEMIFIELD TYPE

Yutaka HIRAMINE

(Received March 10, 1982)

1. Introduction

Let $\pi = \pi(D)$ be a finite projective plane coordinatized by a semifield D of order q. Let A be the collineation group of all elations with axis $[\infty]$ and B the collineation group of all elations with center (∞) . We denote by $P(\pi)$ the collineation group generated by A and B. Set $P = P(\pi)$. Then P has the following properties:

(i) P=AB, $|P|=q^3$, where q is a power of a prime p, and A and B are elementary abelian normal subgroups of P of order q^2 .

(ii) ab=ba implies $a \in A \cap B$ or $b \in A \cap B$ for all $a \in A$ and $b \in B$.

A *p*-group *P* is called a *p*-group of semifield type if it satisfies (i) and (ii) as above. This is the same as a *T*-group satisfying that all $a \in A - A \cap B$ and all $b \in B - A \cap B$ are regular, defined in [1].

In the paper [1], A. Cronheim has proved as part of a more general theorem that a finite semifield can be constructed for the group P and the ordered pair (A, B). We denote the semifield by D(A, B) and the set of all such ordered pairs (A, B) by V_P . Let W_P denote the set of all abelian subgroups of Pof order q^2 . Then one of the following holds (Lemma 4.1).

(i) $p=2 \text{ and } |V_p|=2.$

(ii) p > 2 and $V_p = \{(A, B) | A \neq B, A, B \in W_p\}$.

In this paper we will study the semifields constructed for all (A, B) in V_P .

Let (A, B) and (A', B') be elements in V_P . Then D(A, B) and D(A', B')are isotopic if and only if there exists an automorphism f of P which maps Aonto A' and B onto B' (Lemma 4.2). Therefore, we will consider the action of Aut(P) on the set W_P and will prove the following.

Theorem 4.8. Let P be a p-group of semifield type of order p^{3n} for an odd prime p and a positive integer n and assume $|W_P| > 2$. Set $L = \operatorname{Aut}(P)$, $G = C_L(Z(P))$ and $W = W_P$. Then

(i) $|W| = 1 + p^r$ for a positive divisor r of n.