ORTHOGONAL GROUPS AND SYMMETRIC SETS

NOBUO NOBUSAWA

(Received January 22, 1981)

Orthogonal groups are considered as automorphism groups of some symmetric sets of vectors. From this point of view, we can prove the well-known theorem of simplicity on orthogonal groups. (The cases for the other classical groups are given in [5].) The proof consists of two steps. The first step which will be given in 1 is to show that a transitive symmetric set of non-isotropic lines (of a certain type) is simple. After a short review on simple symmetric set is given, we will show the above fact. A point here is that it is so when dim V is 3. The second step is to show that the group of displacements of the simple symmetric set is a simple group, which will be given in 2. A useful supplement to the main theorem on simple symmetric sets will be found, and using it we can show the above fact when dim $V \ge 5$.

1. A simple symmetric set of non-isotropic lines

Let V be a vector space over a field of characteristic ± 2 with a non-singular orthogonal metric. Since the following results hold in a stronger sense for a finite field as was shown in [4], we assume in this note that the base field k is infinite. Suppose that dim $V \ge 3$ and that V contains a hyperbolic plane. Then, there exists a vector v such that v is orthogonal to a hyperbolic plane and (v, v) $= \varepsilon \pm 0$. Throughout this note, we fix the element ε . Now we consider $A = \{\overline{u} \mid (u, u) = \varepsilon\}$, where $\overline{u} = \langle u \rangle = a$ subspace generated by u. On A, we define a binary operation: $\overline{u} \circ \overline{v} = \overline{w}$ with $w = u^{\tau_v}$, where τ_v is the symmetry with respect to the hyperplane orthogonal to v. A is then a symmetric set, i.e., satisfies $\overline{u} \circ \overline{u} = \overline{u}$, $(\overline{u} \circ \overline{v}) \circ \overline{v} = \overline{u}$ and $(\overline{u} \circ \overline{v}) \circ \overline{w} = (\overline{u} \circ \overline{w}) \circ (\overline{v} \circ \overline{w})$.

We summarize some definitions and properties on simple symmetric sets. Let $S = \{a, b, c, \dots\}$ be a symmetric set. The right multiplication by an element a is an automorphism of S, which we denote by σ_a . Let $G(S) = \langle \sigma_a | a \in S \rangle$ and $H(S) = \langle \sigma_a \sigma_b | a, b \in S \rangle$. The latter is called the group of displacements of S. Let T be another symmetric set. A homomorphism f of S onto T is called proper if it is not one to one and if T contains more than one element. When G(S)=1, we say S is trivial. A non-trivial symmetric set is called simple if it has no proper homomorphism (to some symmetric set). It is important