BLOCK INTERSECTION NUMBERS OF BLOCK DESIGNS

MITSUO YOSHIZAWA

(Received March 12, 1980)

1. Introduction

Let t, v, k and λ be positive integers with $v \ge k \ge t$. A $t-(v, k, \lambda)$ design is a pair consisting of a v-set Ω and a family B of k-subsets of Ω , such that each t-subset of Ω is contained in λ elements of B. Elements of Ω and B are called points and blocks, respectively. A $t-(v, k, \lambda)$ design is called nontrivial provided B is a proper subfamily of the family of all k-subsets of Ω , then t < k < v. In this paper, we assume that all designs are nontrivial. For a $t-(v, k, \lambda)$ design D we use λ_i ($0 \le i \le t$) to represent the number of blocks which contain a given set of i points of D. Then we have

$$\lambda_{i} = \frac{\binom{v-i}{t-i}}{\binom{k-i}{t-i}} \lambda = \frac{(v-i)(v-i-l)\cdots(v-t+l)}{(k-i)(k-i-l)\cdots(k-t+l)} \lambda \qquad (0 \le i \le t)$$

A $t-(v, k, \lambda)$ design **D** is called block-schematic if the blocks of **D** form an association scheme with the relations determined by size of intersection (cf. [3]). In §2, we prove the following theorem which extends the result in [1].

Theorem 1. (a) For each $n \ge 1$ and $\lambda \ge 1$, there exist at most finitely many block-schematic $t-(v, k, \lambda)$ designs with k-t=n and $t\ge 3$.

(b) For each $n \ge 1$ and $\lambda \ge 2$, there exist at most finitely many block-schematic $t-(v, k, \lambda)$ designs with k-t=n and $t\ge 2$.

REMARK. Since there exist infinitely many 2-(v, 3, 1) designs and since every 2-(v, k, 1) design is block-schematic (cf. [2]), Theorem 1 does not hold for $\lambda = 1$ and t = 2.

For a block B of a $t-(v, k, \lambda)$ design **D** we use $x_i(B)$ $(0 \le i \le k)$ to denote the number of blocks each of which has exactly *i* points in common with B. If, for each *i* $(i=0, \dots, k)$, $x_i(B)$ is the same for every block B, we say that **D** is block-regular and we write x_i instead of $x_i(B)$. We remark that if a $t-(v, k, \lambda)$ design **D** is block-schematic then **D** is block-regular. For any t-(v, k, 1) design or any $t-(v, t+1, \lambda)$ design, either of which is block-regular (cf. Lemma 1),