EQUIVARIANT KO-RINGS AND J-GROUPS OF SPHERES WHICH HAVE LINEAR PSEUDOFREE S'-ACTIONS

Shin-ichiro KAKUTANI

(Received January 30, 1980)

1. Introduction

In this paper, we consider the equivariant KO-rings and J-groups of spheres which have linear pseudofree circle actions.

Let S^1 be the circle group consisting of complex numbers of absolute value one. For a sequence $p=(p_1, p_2, \dots, p_m)$ of positive integers, we define the S^1 -action φ_p on the complex *m*-dimensional vector space C^m by

$$\varphi_{p}(s, (z_{1}, z_{2}, \cdots, z_{m})) = (s^{p_{1}}z_{1}, s^{p_{2}}z_{2}, \cdots, s^{p_{m}}z_{m})$$

and denote by

$$S^{2m-1}(p_1, p_2, \cdots, p_m)$$

the unit sphere S^{2m-1} in \mathbb{C}^m with this action φ_p . Then the S^1 -action on $S^{2m-1}(p_1, p_2, \dots, p_m)$ is said to be *pseudofree* (resp. *free*) if $(p_i, p_j)=1$ for $i \neq j$ and $p_i > 1$ for some $1 \leq i \leq m$ (resp. $p_1 = p_2 = \dots = p_m = 1$) (see Montgomery-Yang [19], [20]).

The main results of our paper are as follows:

Theorem 4.7. Let p_i $(1 \le i \le m)$ be positive odd integers such that $(p_i, p_j) = 1$ for $i \ne j$. Then there is a monomorphism of rings:

$$\Phi\colon KO_{S^{1}}(S^{2m-1}(p_{1}, p_{2}, \cdots, p_{m})) \to KO(CP^{m-1}) \oplus \bigoplus_{i=1}^{m} RO(\mathbb{Z}_{p_{i}}).$$

(For details see §4.)

Let G_i $(i \ge 1)$ denote the stable homotopy group $\pi_{n+i}(S^n)$ $(n \ge i+2)$. We define $s(k) = \prod_{i=1}^{k} |G_i|$ for k > 0, where $|G_i|$ denotes the order of the group G_i and put s(-1)=1.

Theorem 5.4. Let p_i $(1 \le i \le m)$ be positive odd integers such that $(p_i, p_j)=1$ for $i \ne j$ and $(p_i, s(2m-3))=1$ for $1 \le i \le m$. Then there is a monomorphism of groups: