Suzuki, T. Osaka J. Math. 17 (1980), 245-252

A REMARK ON ASYMPTOTIC SUFFICIENCY UP TO HIGHER ORDERS IN MULTI-DIMENSIONAL PARAMETER CASE

TAKERU SUZUKI

(Received March 5, 1979)

1. Introduction. Suppose that *n*-dimensional random vector $z_n = (x_1, x_2, \dots, x_n)$ is distributed according to a probability measure $P_{\theta,n}$ parameterized by $\theta \in \Theta \subset \mathbb{R}^p$, and each component x_i is independently and identically distributed. In Suzuki [3] it was shown that when p=1 a statistic $t_n^* = (\hat{\theta}_n, \Phi_n^{(1)}(z_n, \hat{\theta}_n), \dots, \Phi_n^{(k)}(z_n, \hat{\theta}_n))$ is asymptotically sufficient up to order $o(n^{-(k-1)/2})$ in the following sense: For each $n t_n^*$ is sufficient for a family $\{Q_{\theta,n}; \theta \in \Theta\}$ of probability measures and that

$$\lim_{n\to\infty} n^{(k-1)/2} ||P_{\theta,n} - Q_{\theta,n}|| = 0$$

uniformly on any compact subset of Θ (where $||\cdot||$ means the total variation norm of a signed measure). Here $\hat{\theta}_n$ is some reasonable estimator of θ and $\Phi_n^{(i)}(z_n, \theta)$ means the *i*-th logarithmic derivative relative to θ of the density of $P_{\theta,n}$. In this paper we show that the result can be extended to the case where underlying distribution $P_{\theta,n}$ has multi-dimensional parameter θ . Exact form of t_n^* would be found in the statement of the theorem in Section 3. In Michel [2] a similar result was obtained with order of sufficiency $o(n^{-(k-2/)2})$, and hence ours is more accurate one.

2. Notations and assumptions. Let $\Theta(\pm \phi)$ be an open subset of pdimensional Euclidean space \mathbb{R}^p . Suppose that for each $\theta \in \Theta$ there corresponds a probability measure P_{θ} defined on a measurable space (X, A). For each $n \in N = \{1, 2, \dots\}$ let $(X^{(n)}, A^{(n)})$ be the cartesian product of n copies of (X, A), and $P_{\theta,n}$ the product measure of n copies of P_{θ} . For a signed measure $\tilde{\lambda}$ on $(X^{(n)}, A^{(n)})$, $||\tilde{\lambda}||$ means the total variation norm of $\tilde{\lambda}$ over $A^{(n)}$. For a function h and a probability P, E[h; P] stands for the expectation of hunder P. In the following it will be assumed that the map: $\theta \rightarrow P_{\theta}$ is one to one, and that for each $\theta \in \Theta$ P_{θ} has a density $f(x, \theta)$ relative to a sigma-finite measure μ on (X, A). We assume that $f(x, \theta) > 0$ for every $x \in X$ and every $\theta \in \Theta$. We denote by μ_n the product measure of n copies of the same com-