A REMARK ON ASYMPTOTIC SUFFICIENCY UP TO HIGHER ORDERS IN MULTI-DIMENSIONAL PARAMETER CASE

Takeru SUZUKI

(Received March 5, 1979)

1. Introduction. Suppose that n-dimensional random vector $z_{n}=\left(x_{1}\right.$, x_{2}, \cdots, x_{n}) is distributed according to a probability measure $P_{\theta, n}$ parameterized by $\theta \in \Theta \subset \boldsymbol{R}^{p}$, and each component x_{i} is independently and identically distributed. In Suzuki [3] it was shown that when $p=1$ a statistic $t_{n}^{*}=$ $\left(\hat{\theta}_{n}, \Phi_{n}^{(1)}\left(z_{n}, \hat{\theta}_{n}\right), \cdots, \Phi_{n}^{(k)}\left(z_{n}, \hat{\theta}_{n}\right)\right)$ is asymptotically sufficient up to order $o\left(n^{-(k-1) / 2}\right)$ in the following sense: For each $n t_{n}^{*}$ is sufficient for a family $\left\{Q_{\theta, n}\right.$; $\theta \in \Theta\}$ of probability measures and that

$$
\lim _{n \rightarrow \infty} n^{(k-1) / 2}\left\|P_{\theta, n}-Q_{\theta, n}\right\|=0
$$

uniformly on any compact subset of Θ (where $\|\cdot\|$ means the total variation norm of a signed measure). Here $\hat{\theta}_{n}$ is some reasonable estimator of θ and $\Phi_{n}^{(i)}\left(z_{n}, \theta\right)$ means the i-th logarithmic derivative relative to θ of the density of $P_{\theta, n}$. In this paper we show that the result can be extended to the case where underlying distribution $P_{\theta, n}$ has multi-dimensional parameter θ. Exact form of t_{n}^{*} would be found in the statement of the theorem in Section 3. In Michel [2] a similar result was obtained with order of sufficiency $o\left(n^{\left.-(k-2 /)^{2}\right)}\right.$, and hence ours is more accurate one.
2. Notations and assumptions. Let $\Theta(\neq \phi)$ be an open subset of p dimensional Euclidean space \boldsymbol{R}^{p}. Suppose that for each $\theta \in \Theta$ there corresponds a probability measure $P_{\boldsymbol{\theta}}$ defined on a measurable space $(\boldsymbol{X}, \boldsymbol{A})$. For each $n \in N=\{1,2, \cdots\}$ let $\left(\boldsymbol{X}^{(n)}, \boldsymbol{A}^{(n)}\right)$ be the cartesian product of n copies of $(\boldsymbol{X}, \boldsymbol{A})$, and $P_{\theta, n}$ the product measure of n copies of P_{θ}. For a signed measure $\tilde{\lambda}$ on $\left(\boldsymbol{X}^{(n)}, \boldsymbol{A}^{(n)}\right),\|\tilde{\lambda}\|$ means the total variation norm of $\tilde{\lambda}$ over $\boldsymbol{A}^{(n)}$. For a function h and a probability $P, E[h ; P]$ stands for the expectation of h under P. In the following it will be assumed that the map: $\theta \rightarrow P_{\theta}$ is one to one, and that for each $\theta \in \Theta P_{\theta}$ has a densiy $f(x, \theta)$ relative to a sigma-finite measure μ on $(\boldsymbol{X}, \boldsymbol{A})$. We assume that $f(x, \theta)>0$ for every $x \in \boldsymbol{X}$ and every $\theta \in \Theta$. We denote by μ_{n} the product measure of n copies of the same com-

