Soga, H. Osaka J. Math. 17 (1980), 199–232

MIXED PROBLEMS FOR THE WAVE EQUATION WITH A SINGULAR OBLIQUE DERIVATIVE

HIDEO SOGA

(Received September 26, 1978)

Introduction. Let Ω be a domain in \mathbb{R}^2 with a compact C^{∞} boundary Γ , and consider the mixed problem

(0.1)
$$\begin{cases} \Box u \equiv \frac{\partial^2 u}{\partial t^2} - \Delta_x u = f(x, t) \quad \text{in} \quad \Omega \times (0, t_0), \\ \frac{\partial u}{\partial \nu}|_{\Gamma} = g(x', t) \quad \text{on} \quad \Gamma \times (0, t_0), \\ u|_{t=0} = u_0(x) \quad \text{on} \quad \Omega, \\ \frac{\partial u}{\partial t}|_{t=0} = u_1(x) \quad \text{on} \quad \Omega, \end{cases}$$

where $\nu = \nu(x)$ is a non-vanishing real C^{∞} vector field defined in a neighborhood of Γ . We say that (0.1) is C^{∞} well-posed when there exists a unique solution u(x, t) in $C^{\infty}(\overline{\Omega} \times [0, t_0])$ for any $(f, g, u_0, u_1) \in C^{\infty}(\overline{\Omega} \times [0, t_0]) \times C^{\infty}(\Gamma \times [0, t_0]) \times C^{\infty}(\overline{\Omega}) \times C^{\infty}(\overline{\Omega})$ satisfying the compatibility condition of infinite order.

In the case where ν is not tangent to Γ anywhere, various results have been obtained. It has been well known for a long time that the problem (0.1) is C^{∞} well-posed if ν is parallel anywhere to the normal vector n of Γ (the Neumann boundary condition). Ikawa [3] showed that (0.1) is C^{∞} wellposed also if ν is oblique (i.e. not parallel to n) anywhere on Γ (the oblique boundary condition). When these two types are mixed, the shape of Ω has to be taken into consideration. Ikawa [4,5,6] examined it in detail.

In the present paper we shall study (0.1) in the case where ν is not necessarily non-tangent to Γ . We assume that ν is tangent to Γ at finite number of points (of Γ). And we call them singular points. At each singular point the Lopatinski condition is not satisfied; therefore, the mixed problem frozen there is not C^{∞} well-posed (cf. Sakamoto [13]). We can classify the behavior of ν near each singular point into the following three types: As $x' (\in \Gamma)$ passes the singular point in the direction of the tangential component of $\nu(x')$ to Γ ,

- (I) $\langle \nu(x'), n(x') \rangle$ changes sign from positive to negative;
- (II) $\langle \nu(x'), n(x') \rangle$ changes sign from negative to positive;