RIGIDITY AND STABILITY OF EINSTEIN METRICS —THE CASE OF COMPACT SYMMETRIC SPACES

NORIHITO KOISO

(Received October 23, 1978) (Revised May 14, 1979)

1. Introduction and results

Let M be a compact connected manifold of dim $M \ge 2$ and g an Einstein metric on M. If (M, g) is the standard sphere, then all Einstein metrics g' on M near g are of constant sectional curvature, and so (M, g') are homothetic with (M, g) (Berger [2] Proposition 6.4, Muto [23] p457 Theorem). Such an Einstein metric g is said to be *rigid*. We know that some of Einstein metrics with vanishing Ricci tensors are not rigid. For example, flat torus and the K3-surfaces are not rigid (Bourguignon [6] 08). But we know few Einstein metrics with negative definite Ricci tensors which are not rigid. In fact, in this paper we prove the rigidity of Einstein metrics g such that the universal riemannian covering manifold of (M, g) is a symmetric space of non-compact type without 2-dimensional factors (Corollary 3.4). Furthermore, for irreducible locally symmetric spaces of compact type, we show the following.

Theorem 1.1. The following simply connected symmetric spaces are infinitesimally deformable. (For the definition of the infinitesimal deformability, see Definition 2.4.)

SU(n+1) $(n \ge 2)$, SU(n)/SO(n) $(n \ge 3)$, SU(2n)/Sp(n) $(n \ge 3)$, E_6/F_4 .

Theorem 1.2. Let (M, g) be an irreducible locally symmetric space of compact type. If the universal riemannian covering manifold of (M, g) is neither one of the types in Theorem 1.1 nor of the type $U(p+q)/U(p) \times U(q)$ $(p \ge q \ge 2)$, then g is rigid.

Moreover we study the stability of Einstein metrics. It is well-known that Einstein metrics g are nothing but critical metrics with respect to the total scalar curvature T (Hilbert [12]). In general, this critical point is neither maximal nor minimal (Berger [1] p290, Muto [24] p 521 Theorem). But if we consider only metrics of constant scalar curvature, then some critical points are maximal. That is, if we denote by C the set of all riemannian metrics on M of constant scalar curvature and with volume 1, then some Einstein metrics