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Following Handelman [8] we call a ring R is a right strongly semiprime
ring provided if / is a two-sided ideal of R and is essential as a right ideal, then
it contains a finite subset whose right annihilator is zero.

In this paper, we first show that a ring R is a right strongly semiprime
ring if and only if

(1) Q(R) is a direct sum of simple rings, and
(2) eQ(R)eR=eQ(R) for all idempotents e in Q(R) where Q(R) denotes

the maximal ring of right quotients of R.
Using these conditions (1) and (2), we shall investigate the following con-

ditions:
(a) Every nonsingular quasi-injective right i?-module is injective.
(b) Any finite direct sum of nonsingular quasi-injective right i?-modules

is quasi-injective.
(c) Any direct sum of nonsingular quasi-injective right i?-modules is

quasi-injective.
(d) Any direct product of nonsingular quasi-injective right jR-modules

is quasi-injective.
It is shown that the conditions (a), (b) and (d) are equivalent; indeed, the

rings satisfying one of these conditions are determined as rings R such that
RjG(R) is a right strongly semiprime ring, where G(R) denotes the right Goldie
torsion submodule of R. A ring R satisfying the condition (c) is also charac-
terized as a ring R such that RjG(R) is a semiprime right Goldie ring.

1. Preliminaries and notations

Throughout this paper all rings considered have identity and all modules
are unitary.

Let R be a ring. Q(R) denotes its maximal ring of right quotients. Let
M be a right i?-module. By ER(M)y nM, Z(M) and G(M) we denotes its in-
jective hull, the direct product of w-copies, its singular submodule and its Goldie
torsion submodule, respectively. (Note that Z(MIZ(M))=G(M)IZ(M).) For


