ON THE NUMBER OF LATTICE POINTS IN THE SQUARE $|x|+|y| \leqq u$ WITH A CERTAIN CONGRUENCE CONDITION

Yosнiнiко YAMAMOTO*)

(Received December 11, 1978)
0. Introduction. Let $a(u ; p, q)$ denote the number of lattice points $(x, y) \in Z^{2}$ such that (i) $|x|+|y| \leqq u$ (ii) $x+p y \equiv 0(\bmod q)$, where u, p, and q are given positive integers. It is easy to see that $a(u ; p, q)$ is determined only by p modulo q, if q is fixed. Let p^{\prime} be another positive integer. We always assume $(p, q)=\left(p^{\prime}, q\right)=1$ in the following, where (,) means the greatest common divisor. It is easy to see that we have $a(u ; p, q)=a\left(u ; p^{\prime}, q\right)$ for every positive integer u if $p \equiv \pm p^{\prime}$ or $p p^{\prime} \equiv \pm 1(\bmod q)$. We will prove, in the present paper, that the converse is valid:

Theorem 1. Suppose $a(u ; p, q)=a\left(u ; p^{\prime}, q\right)$ for every positive integer u. Then $p \equiv \pm p^{\prime}$ or $p p^{\prime} \equiv \pm 1(\bmod q)$.

Our problem is related with a problem in differential geometry, and gives an answer to it. Consider a 3-dimensional lens space with fundamental group of order q. We ask whether the spectrum of the Laplacian characterizes the space as a riemannian manifold. This geometric problem can be reduced to a problem in number theory. A special case of our theorem, where q is of the form l^{n} or $2 \cdot l^{n}$ (l a prime number), has been shown (cf. Ikeda-Yamamoto [3]). Now our Theorem 1 gives a complete affirmative answer to the above geometric problem (see Section 7 below).

If a lattice point (x, y) satisfies the conditions (i) and (ii), so does the point $(-x,-y)$. Denote by $b(u ; p, q)$ the number of lattice points (x, y) such that (i') $x \geqq 0$ and $x+|y|=u$ (ii) $x+p y \equiv 0(\bmod q)$. Then we see easily that Theorem 1 is equivalent to

Theorem 2. Suppose $b(u ; p, q)=b\left(u ; p^{\prime}, q\right)$ for every positive integer u. Then $p \equiv \pm p^{\prime}$ or $p p^{\prime} \equiv \pm 1(\bmod q)$.

We introduce rational functions $F_{j}(X)(0 \leqq j \leqq q-1)$;

$$
F_{j}(X)=\frac{1}{\left(1-\zeta^{j} X\right)\left(1-\zeta^{p j} X\right)}+\frac{1}{\left(1-\zeta^{j} X\right)\left(1-\zeta^{-p j} X\right)}
$$

[^0]
[^0]: *) Supported by Grant-in-Aid for Scientific Research

