A GENERALIZATION OF MAGNUS' THEOREM

Yoshikazu NAKAI* and Kiyoshi BABA

(Received May 4, 1976)

Let $f(x, y)$ and $g(x, y)$ be polynomials in two variables with integral coefficients. O.H. Keller raised the problem in [1]: If the functional determinant $\partial(f, g) / \partial(x, y)$ is equal to 1 , then is it possible to represent x and y as polynomials of f and g with integral coefficients? This problem drew many mathematicians' attension and several attempts have been made by enlarging the coefficient domain to the complex number field \boldsymbol{C}. But no success has been reported yet. On the other hand A. Magnus studied the volume preserving transformation of complex planes and obtained a result which is relevant to Keller's problem ([2]). From his results it is immediately deduced that Keller's problem is answered affirmativiely provided one of $f(x, y)$ and $g(x, y)$ has prime degree. For the proof Maguns used recursive formulas. But these formulas are complicated and not easy to handle. In this paper we shall give a simple proof of his theorem based on the notion of quasi-homogeneity for generalized polynomials. Moreover we shall go one step further than he did. Our results ensure that Keller's problem is valid provided one of $f(x, y)$ and $g(x, y)$ has degree 4 or larger degree is of the form $2 p$ with an odd prime p. Since a complete solution of Keller's problem is not found yet our paper will be of some interest and worth-while publication.

1. Quasi-homogeneous generalized polynomials

Let x and y be two indeterminates. We shall set $\tilde{A}=\sum_{i, j \in \boldsymbol{Z}} \boldsymbol{C} x^{i} y^{j}$ where \boldsymbol{C} is the complex number field and \boldsymbol{Z} is the ring of rational integers. \tilde{A} is a graded ring and the polynomial ring $\boldsymbol{C}[x, y]$ is a graded subring. Hereafter we shall call an element $f(x, y)$ of \tilde{A} a generalized polynomial or simply a g-polynomial. We shall denote by $S(f)$ the set of lattice points (i, j) in the real two space \boldsymbol{R}^{2} such that the monomial $x^{i} y^{j}$ appears in $f(x, y)$ with a non-zero coefficient. $S(f)$ will be called the supoprt of $f(x, y)$. A g-polynomial $f(x, y)$ is called a homogeneous g-polynomial or a g-form if $S(f)$ lies in the straight line of the form $X+Y=m$ where $m \in Z$ and is called the degree of the g-form $f(x, y)$.

[^0]
[^0]: *) Supported by Takeda Science Foundation.

