Kusama, T. Osaka J. Math. 13 (1976), 661–669

ON APPROXIMATE SUFFICIENCY

TOKITAKE KUSAMA

(Received October 10, 1975) (Revised March 10, 1976)

H. Kudō defined the notion of approximate sufficiency in his paper ([4], [6]) and proved some interesting results. In this paper we obtain some characterizations for it.

1. Notations and definitions

Let (X, \mathcal{A}) be a sample space consisting of a set X and a σ -algebra \mathcal{A} of subsets of X. The reader should understand by the word " σ -algebra" and "algebra" a sub- σ -algebra and subalgebra of \mathcal{A} , respectively. Given a σ -algebra \mathcal{B} and a finite measure λ on \mathcal{A} , $E_{\lambda}(f|\mathcal{B})$ denotes the conditional expectation of a λ -integrable function f over X given \mathcal{B} with respect to λ : *i.e.*, $E_{\lambda}(f|\mathcal{B})$ is a \mathcal{B} -measurable function such that $\int_{\mathcal{B}} f d\lambda = \int_{\mathcal{B}} E_{\lambda}(f|\mathcal{B}) d\lambda$ for every $\mathcal{B} \in \mathcal{B}$. When a probability measure P on \mathcal{A} is absolutely continuous with respect to λ (we write $P \ll \lambda$), $\frac{dP}{d\lambda}$ denotes the Radon-Nikodym derivative. It is clear that $E_{\lambda}\left(\frac{dP}{d\lambda}|\mathcal{B}\right)$ coincides with the Radon-Nikodym derivative $\frac{dP}{d\lambda}|_{\mathcal{B}}$ of P/\mathcal{B} with respect to λ/\mathcal{B} , where P/\mathcal{B} and λ/\mathcal{B} are the contractions of P and λ to \mathcal{B} respectively.

For a finite signed measure m, $||m||_{\mathcal{B}}$ denotes the value $\sup_{B \in \mathcal{B}} |m(B)|$. When $m \ll \lambda$ and m(X) = 0, it is well known that $||m||_{\mathcal{B}} = \frac{1}{2} \int_{X} \left| \frac{dm}{d\lambda} \right|_{\mathcal{B}} |d\lambda|$ $\left(= \frac{1}{2} \int_{X} |E_{\lambda} \left(\frac{dm}{d\lambda} |\mathcal{B} \right)| d\lambda \right)$. Here and hereafter the integration without any assignment of its domain should be understood as that extended over the whole space X.

Let $\{\mathcal{A}_n\}$ be an increasing sequence of σ -algebras and $\{\mathcal{B}_n\}$ a sequence of σ -algebras satisfying $\mathcal{B}_n \subset \mathcal{A}_n$. According to Kudō ([4], [6]), $\{\mathcal{B}_n\}$ is said to be approximately sufficient for a pair $\{P, Q\}$ of probability measures on \mathcal{A} , if for each *n* there is a pair of probability measures $\{P_n, Q_n\}$ on \mathcal{A}_n such that