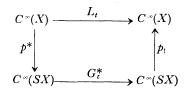
SPHERICAL MEANS ON RIEMANNIAN MANIFOLDS

TORU TSUJISHITA

(Received October 13, 1975)

1. Let X be a compact Riemannian manifold of dimension n, TX its tangent bundle and SX its unit sphere bundle. Denote by $p: SX \rightarrow X$ the canonical projection. Let $G_t: SX \rightarrow SX(t \in \mathbb{R})$ be the geodesic flow.

The spherical mean (of radius t) $L_t: C^{\infty}(X) \to C^{\infty}(X)$ is defined by the following commutative diagram:



Here p^* and G_t^* denote the maps induced, respectively, by p and G_t , and p_1 is the fibre integral defined by

$$p_! f(x) = \int_{p^{-1}x} f \omega_F, \qquad f \in C^{\infty}(SX),$$

 ω_F being the volume element on the fibre of p defined naturally by the Riemannian metric on X.

In this paper we prove the following

Theorem I. For sufficiently small positive t, L_t is a Fourier integral operator of order $-\frac{1}{2}(n-1)$, which belongs to the class determined by the conormal bundle $\Lambda \subset T^*(X \times X) \setminus 0$ of $\Delta_t = \{(x, y); d(x, y) = t\} \subset X \times X$, d being the metric induced by the Riemannian metric.

The author would like to express his gratitude to T. Sunada for suggesting the above result.

2. For convenience sake, we consider all the operators as acting on the spaces of half densities. Let $\Omega_{\frac{1}{2}}(X)$ denote the bundle of half densities on X and $C^{\infty}\Omega_{\frac{1}{2}}(X)$ the space of smooth cross-sections of $\Omega_{\frac{1}{2}}(X)$. The Riemannian metric of X induces canonical densities ω_X and ω_{SX} , respectively, on X and SX, which allow us to identify $C^{\infty}(X)$ with $C^{\infty}\Omega_{\frac{1}{2}}(X)$, $C^{\infty}(SX)$ with $C^{\infty}\Omega_{\frac{1}{2}}(SX)$, respectively,