\tilde{H} -COBORDISM, I; THE GROUPS AMONG THREE DIMENSIONAL HOMOLOGY HANDLES

AKIO KAWAUCHI

(Received September 25, 1975)

This paper will introduce a concept of a cobordism theory, called \tilde{H} -cobordism, between 3-dimensional homology handles. The set of the types of distinguished homology orientable handles modulo \tilde{H} -cobordism relation will form an abelian group $\Omega(S^1 \times S^2)$, called the \tilde{H} -cobordism group of homology orientable handles. As a basic property of the \tilde{H} -cobordism group $\Omega(S^1 \times S^2)$ the following commutative triangle will be established:

Here, C^1 is the Fox-Milnor's 1-knot cobordism group (See Fox-Milnor [3].), G_- is the Levine's integral matrix cobordism group (See Levine [9].), e is a homomorphism and ϕ , ψ are epimorphisms. In particular the \tilde{H} -cobordism group $\Omega(S^1 \times S^2)$ will have an infinite rank. Analogously the \tilde{H} -cobordism group $\Omega(S^1 \times_{\tau} S^2)$ of homology non-orientable handles will be also constructed. We shall show that the \tilde{H} -cobordism group $\Omega(S^1 \times_{\tau} S^2)$ is isomorphic to the direct sum of infinitely many copies of the cyclic group of order two. Furthermore, it will be shown that the assignment $\tau: m \to m'$ of the type m of any distinguished homology non-orientable handle to the type m' of its 2-fold orientation-cover (which is a distinguished homology orientable handle) induces a well-defined homomorphism $\tau^*: \Omega(S^1 \times_{\tau} S^2) \to T_2 \subset \Omega(S^1 \times S^2)$ from $\Omega(S^1 \times_{\tau} S^2)$ to the subgroup T_2 of $\Omega(S^1 \times S^2)$ consisting of elements of order two. As one consequence T_2 will be infinitely generated.

Section 1 will construct the \hat{H} -cobordism group $\Omega(S^1 \times S^2)$ of homology orientable handles. In Section 2 we will discuss the properties of the invariants of $\Omega(S^1 \times S^2)$ and compare $\Omega(S^1 \times S^2)$ with Fox-Milnor's 1-knot cobordism group C^1 and with the Levine's integral matrix cobordism group G_- . Section 3 will concern the zero element and the order-two-elements of the \hat{H} -cobordism group $\Omega(S^1 \times S^2)$. It will be shown that the type m of a distinguished homology orientable