Harada, M. Osaka J. Math. 13 (1976), 431-438

A NOTE ON RELATIVE T-NILPOTENCY

MANABU HARADA

(Received June 23, 1975)

This note gives some supplementary results of [6]. The first one shows an application of the idea in the proof of [6], Lemma 7 and gives a characterization of artinian rings. The second one gives a refinement of [6], Corollary 2 to Theorem A.2 and the final one is a special type of the exchange property.

Throughout we shall assume that R is a ring with identity and modules are unitary right R-modules. First, we shall recall definitions in [6].

Let $\{P_{\alpha}\}_{I}$ and $\{Q_{\beta}\}_{J}$ be two infinite sets of *R*-modules. We take a countable set $\{M_{i}\}_{1}^{\infty}$ such that $M_{2i-1} = P_{\alpha(2i-1)} \in \{P_{\alpha}\}_{I}$ and $M_{2j} = Q_{\beta(2j)} \in \{Q_{\beta}\}_{J}$. Further we take a set of non-isomorphisms $f_{i}: M_{i} \rightarrow M_{i+1}$. If for any element *m* in M_{1} there exists *n* such that $f_{n}f_{n-1}\cdots f_{1}(m)=0$, we say $\{f_{i}\}_{1}^{\infty}$ is *locally T-nilpotent*. If for any countable sets $\{M_{i}\}_{1}^{\infty}$ above such that $\alpha(2i-1) \neq \alpha(2i'-1)$ ($\beta(2j) \neq \beta(2j')$) if $i \neq i'$ ($j \neq j'$) any sets $\{f_{i}\}$ of non-isomorphisms are always locally T-nilpotent, then we say $\{P_{\alpha}\}_{I}$ and $\{Q_{\beta}\}_{J}$ are relatively and locally sami-*T*nilpotent. If we omit the assumptions $\alpha(2i-1) \neq \alpha(2i')$ ($\beta(2j) \neq \beta(2j')$) in the above, we say $\{P_{\alpha}\}_{I}$ and $\{Q_{\beta}\}_{J}$ are relatively and locally *T*-nilpotent. If $\{P_{\alpha}\}_{I} = \{Q_{\beta}\}_{J}$, we say $\{P_{\alpha}\}_{I}$ is locally semi-*T*-nilpotent or *T*-nilpotent, corresponding to the above cases. We shall assume that the definition of relatively semi-*T*-nilpotency contains a case of either *I* or *J* being finite. If $K = \sum_{I} \bigoplus P_{\alpha} = \sum_{I} \bigoplus Q_{\beta}$ and $\{P_{\alpha}\}_{I}$, $\{Q_{\beta}\}_{J}$ are locally and relatively *T*-nilpotent, then we say $\sum_{T} \oplus P_{\alpha}$ and $\sum_{T} \oplus Q_{\beta}$ are relatively *T*-nilpotent decompositions of *K*.

Finally, let $M=N\oplus P$ be *R*-modules and κ a cardinal number. If for any decomposition $M=\Sigma\oplus L_{\sigma}$ with κ -components there exist submodules L_{σ} of L_{σ} such that $M=N\oplus\Sigma\oplus L_{\sigma}$, then we say *N* has the κ -exchange property in *M*. In case κ is any cardinal, we say *N* has the exchange property in *M*.

1. T-nilpotent decompositions

First, we study a property of relative T-nilpotency. If the endomorphism ring of a module M is a local ring, then we call M completely indecomposable.

Lemma 1. Let M be an R-module and f,g in $\operatorname{End}_{R}(M)$. If fg is isomorphic, $M = \operatorname{Im} g \oplus \operatorname{Ker} f$.