Kano, M., Nagao, H. and Nobusawa, N. Osaka J. Math. 13 (1976), 399-406

ON FINITE HOMOGENEOUS SYMMETRIC SETS

Dedicated to Professor Mutsuo Takahashi on his 60th bitrhday

MIKIO KANO, HIROSI NAGAO AND NOBUO NOBUSAWA

(Received June 19, 1975)

1. Introduction

A symmetric set is a set A on which a binary operation $a \circ b$ is defined satisfying the following three axioms:

(1.1) $a \circ a = a$,

- $(1.2) \quad (x \circ a) \circ a = x ,$
- (1.3) $x \circ (a \circ b) = ((x \circ b) \circ a) \circ b$.

The mapping $S_a: A \to A$ defined by $xS_a = x \circ a$ is a permutation on A by (1.2), and it is called the symmetry around a. Corresponding to the axioms above we have the following:

- (1.1') $aS_a = a$,
- (1.2') $S_a^2 = I$,
- (1.3') $S_{a\circ b} = S_{aS_b} = S_b^{-1} S_a S_b$.

We denote by G(A) the permutation group on A generated by $S_A = \{S_a | a \in A\}$. Since $T^{-1}S_a T = S_{aT}$ for $a \in A$ and $T \in G(A)$ by (1.3'), S_A is a set of involutions in G(A) which is G(A)-invariant. The subgroup of G(A) generated by $\{S_a S_b | a, b \in A\}$ is called the *group of displacements* and is denoted by H(A). The set S_A is a symmetric set with binary operation $S_a \circ S_b = S_b^{-1}S_a S_b$. The mapping $a \mapsto S_a$ of A onto S_A is a homomorphism, and if it is an isomorphism, *i.e.* if $a \neq b$ implies $S_a \neq S_b$ then A is called *effective*. If A is effective then the center Z(G(A)) of G(A) is trivial.

REMARK. In [4] and [5] the group of displacements is denoted by G(A). Now suppose that G is a group and A is a subset of G satisfying the following:

- (1.4) A is a set of involutions in G which is G-invariant,
- (1.5) G is generated by A.