Thomas, E. Osaka J. Math. 13 (1976), 163–186

EMBEDDING MANIFOLDS IN EUCLIDEAN SPACE

EMERY THOMAS*

(Received February 17, 1975)

1. Introduction. We consider here the problem of whether a smooth manifold M (compact, without boundary) embeds in Euclidean space of a given dimension. Our results are of two kinds: first we give sufficient conditions for an orientable *n*-manifold to embed in R^{2n-2} , and we then give necessary and sufficient conditions for RP^n (=*n*-dimensional real projective space) to embed in R^{2n-6} . We obtain these results using the embedding theory of A. Haefliger [6].

Recall that by Whitney [37], every *n*-manifold embeds in \mathbb{R}^{2n} . Combining results of Haefliger [6], Haefliger-Hirsch [9] and Massey-Peterson [16] one knows that every *orientable n*-manifold embeds in \mathbb{R}^{2n-1} (n>4), and if *n* is not a power of two, *every n*-manifold embeds in \mathbb{R}^{2n-1} . Finally, if *n* is a power of two (n>4), by [9] and [26] one has: a non-orientable *n*-manifold embeds in \mathbb{R}^{2n-1} if and only if $\overline{w}_{n-1}=0$. Here $\overline{w}_{i}, i \ge 0$, denotes the (mod 2) normal Stiefel-Whitney class of a manifold M.

We give two sets of sufficient conditions for embedding an *n*-manifold in R^{2n-2} ; in order to use the theory of Haefliger, we assume $n \ge 7$.

Theorem 1.1. Let M be an orientable n-manifold, with $\overline{w}_{n-3+i}=0$, for $i \ge 0$. If either $w_3 \ne 0$, or $w_2 \ne 0$ and $H_1(M; Z)$ has no 2-torsion, then M embeds in \mathbb{R}^{2n-2} .

Here w_i denotes the $i^{th} \mod 2$ (tangent) Stiefel-Whitney class of M. A necessary condition for M^n to embed in R^{2n-2} is that $\overline{w}_{n-2}=0$. Note, however, that if n-1 is a power of two, then RP^n does not embed in R^{2n-2} , even though $\overline{w}_{n-2}=0$. (In this case $\overline{w}_{n-3} \neq 0$ and $H_1(RP^n; Z) = Z_2$).

By Massey-Peterson [16] one has that $\overline{w}_{n-3+i}=0$, $i \ge 0$, for M^n , provided one of the following conditions is satisfied: $n \equiv 3 \mod 4$; $n \equiv 0, 2 \mod 4$ and $\alpha(n) \ge 3$; $n \equiv 1 \mod 4$ and $\alpha(n) \ge 4$. Here $\alpha(n)$ denotes the number of one's in the dyadic expansion of the integer n.

Recall that an orientable manifold is called a spin manifold if $w_2=0$. As a complement to Theorem (1.1) we have:

Theorem 1.2. Let M be an n-dimensional spin manifold with $\overline{w}_{n-5+i}=0$,

^{*)} Research supported by the National Science Foundation