ON GALOIS EXTENSION WITH INVOLUTION OF RINGS

Dedicated to Professor Kiiti Morita on his 60th birthday

Teruo KANZAKI

(Received December 3, 1974)

1. Introduction

For a Galois extension field L of a field K with Galois gruop G, A. Rosenberg and R. Ware [9] proved that if [L:K] is odd then the Witt ring $\mathrm{W}(K)$ is isomorphic to $\mathrm{W}(L)^{G}$. The proof was simplified by M. Knebusch and W. Scharlau [5], and the theorem was generalized by M. knebusch, A. Rosenberg and R. Ware [6] to the case of commutative semilocal rings. In this note, concerning with sesqui-linear forms over a non commutative ring defined in [2], we want to extend the theorem to a case of non commutative rings. In §2 and §3, we difine a Galois extension with involution of a ring and an odd type Galois extension with involution. From the theorem of Scharlau (cf. [11], [7]), we know that for a Galois extension with involution $L \supset K$ of fields, $L \supset K$ is an odd type Galois extension with involution if and olnly if $[L: K]$ is odd. If $A \supset B$ is a G Galois extension with involution of rings, then we can prove the isomorphism $i^{*} \circ t_{\sigma *}(q)=\sum_{\sigma \in G} \perp \sigma^{*}(q)$ for any sesqui-linear left A-module $q=(M, q)$. This isomorphism is a generalization of the case of fields [4], semilocal rings [6]. If A is an algebra over a commutative ring R, and if $A \supset R$ is an odd type G-Galois extension with involution, then it is obtained that the inclusion map $i: R \rightarrow A$ induces a group monomorphism $i^{*}: \mathrm{W}(R) \rightarrow \mathrm{W}(A)$ of Witt groups of hermitian left modules, and its image is $T_{G^{*}}(\mathrm{~W}(A))$. Throughout this paper, we assume that every ring has identity element and module is unitary. Furthermore, ring homomorphisms are assumed to correspond identity element to identity element.

2. Sesqui-linear forms

Definition 1. Let A be a ring with involution $A \rightarrow A ; a \leadsto \leadsto a$, i.e. $\overline{a+b}=$ $\bar{a}+\bar{b}, \bar{a} \bar{b}=\bar{b} a$ and $\overline{\bar{a}}=a$ for every a, b in A. For a subring B and a finite group G of ring-automorphisms of $A, A \supset B$ is called a G-Galois extension with involution if every element in G is compatible with the involution, i.e. $\overline{\sigma(a)}=\sigma(a)$ for all $a \in A, \sigma \in G$, and if $A \supset B$ a G-Galois extension, i.e. $A^{G}=B$ and there exist

