Kyuno, S. Osaka J. Math. 12 (1975), 639-645

ON THE RADICALS OF Γ **-RINGS**

SHOJI KYUNO

(Received October 17, 1974)

1. Introduction

N. Nobusawa [1] introduced the notion of a Γ -ring, more general than a ring, and proved analogues of the Wedderburn-Artin theorems for simple Γ rings and for semi-simple Γ -rings; Barnes [2] obtained analogues of the classical Noether-Lasker theorems concerning primary representations of ideals for Γ rings; Luh [3, 4] gave a generalization of the Jacobson structure theorem for primitive Γ -rings having minimum one-sided ideals, and obtained several other structure theorems for simple Γ -rings; Coppage-Luh [5] introduced the notions of Jacobson radical, Levitzki nil radical, nil radical and strongly nilpotent radical for Γ -rings and Barnes' [2] prime radical was studied further. Also, inclusion relations for these radicals were obtained, and it was shown that the radicals all coincide in the case of a Γ -ring which satisfies the descending chain condition on one-sided ideals.

In this paper the notions of semi-prime ideals are extended to Γ -rings, and it is shown that all of the following conditions are equivalent: (1) Q is a semiprime ideal. (2) Q^c is an *n*-system. (3) The Γ -residue class ring M/Q contains no non-zero strongly nilpotent ideals. (4) The prime radical P(Q) of the ideal Q coincides with Q. Also, the following characterization of P(M) is obtained. P(M) is a semi-prime ideal which is contained in every semi-prime ideal in M. Let R be the right operator ring of a Γ -ring M. For $P \subseteq R$ and for $Q \subseteq M$ we define $P^* = \{x \in M : [\Gamma, x] \subseteq P\}$ and $Q^{*'} = \{\sum_i [\alpha_i, x_i] \in R : M(\sum_i [\alpha_i, x_i]) \subseteq Q\}$. In [5] the following theorem was proved. If P(M) is the prime radical of the right operator ring R of the Γ -ring M, then $P(M) = P(R)^*$.

We show the following result dual to the above theorem, $P(R)=P(M)^{*'}$. As a result, it is obtained that $P(M)^{*'*}=P(M)$ and $P(R)^{**'}=P(R)$. The similar properties hold for the Levitzki nil radical and Jacobson radical. Also, some radical properties are cosidered.

2. Preliminaries

Let *M* and Γ be additive abelian groups. If for all $a, b, c \in M$, and $\alpha, \beta \in \Gamma$,