Sakai, A. Osaka J. Math. 12 (1975), 33-39

UNIFORM ALGEBRA GENERATED BY $z_1, \dots, z_n, f_1(z), \dots, f_s(z)$

Dedicated to Professor Yukinari Tôki on his 60th birthday

Akira SAKAI

(Received November 29, 1973)

Introduction

Let C^n be the complex Euclidean space with complex coordinates $z = (z_1, \dots, z_n)$ and K a compact subset of C^n . For any complex valued C^{∞} -functions f_1, \dots, f_s defined on an open subset U of C^n containing K, we shall consider the uniform algebra A consisting of uniform limits of polynomials of z_1, \dots, z_n , f_1, \dots, f_s on K.

Hörmander-Wermer [1] proved that, if s=n and if each f_j is 'close' to \bar{z}_j in some sense, then A coincides with C(K), the algebra of all complex valued continuous functions on K. In this paper, we shall deal with the case where 0 < s < n and each f_j is holomorphic in z_{s+1}, \dots, z_n near K. In Section 3, an approximation theorem on the graph of f_1, \dots, f_s will be proved. In Section 4, we shall give a sufficient condition on f_j and K assuring that every function holomorphic in z_{s+1}, \dots, z_n near K belongs to A.

1. The graph of f_1, \dots, f_s

Let f_1, \dots, f_s be C^{∞} -functions defined on an open subset U of C^n . The graph of f_1, \dots, f_s

 $M = \{(z_1, \dots, z_n, f_1(z), \dots, f_s(z)) \in \mathbb{C}^{n+s}; \ z = (z_1, \dots, z_n) \in U\}$

is a real 2*n*-dimensional submanifold of C^{n+s} . If g is a C^{∞} -function on M, then the function g_0 defined by

(1.1)
$$g_0(z_1, \dots, z_n) = g(z_1, \dots, z_n, f_1(z_1, \dots, z_n), \dots, f_s(z_1, \dots, z_n))$$

is a C^{∞} -function on U.

We denote by $H_r(U)$, r=n-s, the class of functions of $C^{\infty}(U)$ which are holomorphic in z_{s+1}, \dots, z_n .

We shall now consider the following assumptions on f_1, \dots, f_s :

(1.2)
$$f_1, \dots, f_s$$
 belong to $H_r(U)$, and