Watanabe, K. Osaka J. Math. 10 (1973), 243-246

A UNIQUE CONTINUATION THEOREM FOR AN ELLIPTIC OPERATOR OF TWO INDEPENDENT VARIABLES WITH NON-SMOOTH DOUBLE CHARACTERISTICS

Kinji WATANABE*

(Received October 3, 1972)

1. Introduction. Let $P=P(x; \partial/\partial x)$ be an elliptic homogeneous differential operator of order $m(\geq 2)$ with complex valued C^{∞} coefficients defined near the origin in the 2-dimensional real Euclidean space R^2 . We say that P is A-elliptic at x_0 if x_0 has a neighbourhood U such that for any open and connected neighbourhood $V (\subset U)$ of x_0 , there is no non-trivial solution $u \in C^m(V)$ of the differential inequality in V

(1)
$$|P(x; \partial/\partial x)u| \leq C \sum_{|x| < m} |(\partial/\partial x)^{\alpha}u|$$

such that u=0 in some open subset (of V) whose closure contains the point x_0 . It is well known that P is A-elliptic at each point where P has simple characteristics, or P has double characteristics and has Lipschitz continuous characteristic roots (see Hörmander [1], Pederson [2]).

In the present paper we shall give a sufficient condition for the operator P to be A-elliptic when P has double characteristics and its symbol $P(x; \xi)$ has a factorization of the form in a neighbourhood of the origin

(2)
$$p(x; \xi) = a(x) \prod_{j=1}^{N} (\xi_1^2 + 2a_j(x)\xi_1\xi_2 + b_j(x)\xi_2^2)$$

or

(3)
$$p(x;\xi) = a(x) \prod_{j=1}^{N} (\xi_1^2 + 2a_j(x)\xi_1\xi_2 + b_j(x)\xi_2^2) \prod_{j=N+1}^{N+s} (\xi_1 + a_j(x)\xi_2).$$

Here a, a_j and b_k are $C^{\infty}(\omega)$ functions such that $a(0) \neq 0$, $a_j(0)^2 = b_j(0)$ $(j=1, \dots, N)$ and $a_j(0) \neq a_k(0)$ $(1 \leq j \neq k \leq N+s)$.

Set $c_j(x) = b_j(x) - a_j(x)^2$ and let R_j be the set of points $y \in \omega$ which has a neighbourhhood where $c_j(x) = k(x)^2$ for some $C^{1+1/2}$ function k(x). Then we have our main result as follows.

^{*} This work was carried out in 1972 at Osaka University, where the author was supported by the Yukawa Foundation.